Download Free Metaheuristics For Resource Deployment Under Uncertainty In Complex Systems Book in PDF and EPUB Free Download. You can read online Metaheuristics For Resource Deployment Under Uncertainty In Complex Systems and write the review.

Metaheuristics for Resource Deployment under Uncertainty in Complex Systems analyzes how to set locations for the deployment of resources to incur the best performance at the lowest cost. Resources can be static nodes and moving nodes while services for a specific area or for customers can be provided. Theories of modeling and solution techniques are used with uncertainty taken into account and real-world applications used. The authors present modeling and metaheuristics for solving resource deployment problems under uncertainty while the models deployed are related to stochastic programming, robust optimization, fuzzy programming, risk management, and single/multi-objective optimization. The resources are heterogeneous and can be sensors and actuators providing different tasks. Both separate and cooperative coverage of the resources are analyzed. Previous research has generally dealt with one type of resource and considers static and deterministic problems, so the book breaks new ground in its analysis of cooperative coverage with heterogeneous resources and the uncertain and dynamic properties of these resources using metaheuristics. This book will help researchers, professionals, academics, and graduate students in related areas to better understand the theory and application of resource deployment problems and theories of uncertainty, including problem formulations, assumptions, and solution methods.
This textbook provides a comprehensive introduction to nature-inspired metaheuristic methods for search and optimization, including the latest trends in evolutionary algorithms and other forms of natural computing. Over 100 different types of these methods are discussed in detail. The authors emphasize non-standard optimization problems and utilize a natural approach to the topic, moving from basic notions to more complex ones. An introductory chapter covers the necessary biological and mathematical backgrounds for understanding the main material. Subsequent chapters then explore almost all of the major metaheuristics for search and optimization created based on natural phenomena, including simulated annealing, recurrent neural networks, genetic algorithms and genetic programming, differential evolution, memetic algorithms, particle swarm optimization, artificial immune systems, ant colony optimization, tabu search and scatter search, bee and bacteria foraging algorithms, harmony search, biomolecular computing, quantum computing, and many others. General topics on dynamic, multimodal, constrained, and multiobjective optimizations are also described. Each chapter includes detailed flowcharts that illustrate specific algorithms and exercises that reinforce important topics. Introduced in the appendix are some benchmarks for the evaluation of metaheuristics. Search and Optimization by Metaheuristics is intended primarily as a textbook for graduate and advanced undergraduate students specializing in engineering and computer science. It will also serve as a valuable resource for scientists and researchers working in these areas, as well as those who are interested in search and optimization methods.
A unified view of metaheuristics This book provides a complete background on metaheuristics and shows readers how to design and implement efficient algorithms to solve complex optimization problems across a diverse range of applications, from networking and bioinformatics to engineering design, routing, and scheduling. It presents the main design questions for all families of metaheuristics and clearly illustrates how to implement the algorithms under a software framework to reuse both the design and code. Throughout the book, the key search components of metaheuristics are considered as a toolbox for: Designing efficient metaheuristics (e.g. local search, tabu search, simulated annealing, evolutionary algorithms, particle swarm optimization, scatter search, ant colonies, bee colonies, artificial immune systems) for optimization problems Designing efficient metaheuristics for multi-objective optimization problems Designing hybrid, parallel, and distributed metaheuristics Implementing metaheuristics on sequential and parallel machines Using many case studies and treating design and implementation independently, this book gives readers the skills necessary to solve large-scale optimization problems quickly and efficiently. It is a valuable reference for practicing engineers and researchers from diverse areas dealing with optimization or machine learning; and graduate students in computer science, operations research, control, engineering, business and management, and applied mathematics.
This two-volume set constitutes the refereed proceedings of the 17th International Conference on Collaborative Computing: Networking, Applications, and Worksharing, CollaborateCom 2021, held in October 2021. Due to COVID-19 pandemic the conference was held virtually. The 62 full papers and 7 short papers presented were carefully reviewed and selected from 206 submissions. The papers reflect the conference sessions as follows: Optimization for Collaborate System; Optimization based on Collaborative Computing; UVA and Traffic system; Recommendation System; Recommendation System & Network and Security; Network and Security; Network and Security & IoT and Social Networks; IoT and Social Networks & Images handling and human recognition; Images handling and human recognition & Edge Computing; Edge Computing; Edge Computing & Collaborative working; Collaborative working & Deep Learning and application; Deep Learning and application; Deep Learning and application; Deep Learning and application & UVA.
This title presents a large variety of models and algorithms dedicated to the resource-constrained project scheduling problem (RCPSP), which aims at scheduling at minimal duration a set of activities subject to precedence constraints and limited resource availabilities. In the first part, the standard variant of RCPSP is presented and analyzed as a combinatorial optimization problem. Constraint programming and integer linear programming formulations are given. Relaxations based on these formulations and also on related scheduling problems are presented. Exact methods and heuristics are surveyed. Computational experiments, aiming at providing an empirical insight on the difficulty of the problem, are provided. The second part of the book focuses on several other variants of the RCPSP and on their solution methods. Each variant takes account of real-life characteristics which are not considered in the standard version, such as possible interruptions of activities, production and consumption of resources, cost-based approaches and uncertainty considerations. The last part presents industrial case studies where the RCPSP plays a central part. Applications are presented in various domains such as assembly shop and rolling ingots production scheduling, project management in information technology companies and instruction scheduling for VLIW processor architectures.
Due to increasing industry 4.0 practices, massive industrial process data is now available for researchers for modelling and optimization. Artificial Intelligence methods can be applied to the ever-increasing process data to achieve robust control against foreseen and unforeseen system fluctuations. Smart computing techniques, machine learning, deep learning, computer vision, for example, will be inseparable from the highly automated factories of tomorrow. Effective cybersecurity will be a must for all Internet of Things (IoT) enabled work and office spaces. This book addresses metaheuristics in all aspects of Industry 4.0. It covers metaheuristic applications in IoT, cyber physical systems, control systems, smart computing, artificial intelligence, sensor networks, robotics, cybersecurity, smart factory, predictive analytics and more. Key features: Includes industrial case studies. Includes chapters on cyber physical systems, machine learning, deep learning, cybersecurity, robotics, smart manufacturing and predictive analytics. surveys current trends and challenges in metaheuristics and industry 4.0. Metaheuristic Algorithms in Industry 4.0 provides a guiding light to engineers, researchers, students, faculty and other professionals engaged in exploring and implementing industry 4.0 solutions in various systems and processes.
Learn how to employ JADE to build multi-agent systems! JADE (Java Agent DEvelopment framework) is a middleware for the development of applications, both in the mobile and fixed environment, based on the Peer-to-Peer intelligent autonomous agent approach. JADE enables developers to implement and deploy multi-agent systems, including agents running on wireless networks and limited-resource devices. Developing Multi-Agent Systems with JADE is a practical guide to using JADE. The text will give an introduction to agent technologies and the JADE Platform, before proceeding to give a comprehensive guide to programming with JADE. Basic features such as creating agents, agent tasks, agent communication, agent discovery and GUIs are covered, as well as more advanced features including ontologies and content languages, complex behaviours, interaction protocols, agent mobility, and the in-process interface. Issues such as JADE internals, running JADE agents on mobile devices, deploying a fault tolerant JADE platform, and main add-ons are also covered in depth. Developing Multi-Agent Systems with JADE: Comprehensive guide to using JADE to build multi-agent systems and agent orientated programming. Describes and explains ontologies and content language, interaction protocols and complex behaviour. Includes material on persistence, security and a semantics framework. Contains numerous examples, problems, and illustrations to enhance learning. Presents a case study demonstrating the use of JADE in practice. Offers an accompanying website with additional learning resources such as sample code, exercises and PPT-slides. This invaluable resource will provide multi-agent systems practitioners, programmers working in the software industry with an interest on multi-agent systems as well as final year undergraduate and postgraduate students in CS and advanced networking and telecoms courses with a comprehensive guide to using JADE to employ multi agent systems. With contributions from experts in JADE and multi agent technology.
Imagine planning an event like the Olympics. Now imagine planning the same event but not knowing when or where it will take place, or how many will attend. This is what humanitarian logisticians are up against. Oversights result in serious consequences for the victims of disasters. So they have to get it right, fast.
The book is devoted to structural issues, algorithms, and applications of resource allocation problems in project management. Special emphasis is given to a unifying framework within which a large variety of project scheduling problems can be treated. Those problems involve general temporal constraints among project activities, different types of scarce resources, and a broad class of regular and nonregular objective functions ranging from time-based and financial to resource levelling functions. The diversity of the models proposed allows for covering many features arising in scheduling applications beyond the field of project management such as short-term production planning in the manufacturing or process industries.
If engineering is the art and science of technical problem solving, systems architecting happens when you don't yet know what the problem is. The third edition of a highly respected bestseller, The Art of Systems Architecting provides in-depth coverage of the least understood part of systems design: moving from a vague concept and limited resources