Download Free Metacommunities Book in PDF and EPUB Free Download. You can read online Metacommunities and write the review.

Takes the hallmarks of metapopulation theory to the next level by considering a group of communities, each of which may contain numerous populations, connected by species interactions within communities and the movement of individuals between communities. This book seeks to understand how communities work in fragmented landscapes.
Metacommunity ecology links smaller-scale processes that have been the provenance of population and community ecology—such as birth-death processes, species interactions, selection, and stochasticity—with larger-scale issues such as dispersal and habitat heterogeneity. Until now, the field has focused on evaluating the relative importance of distinct processes, with niche-based environmental sorting on one side and neutral-based ecological drift and dispersal limitation on the other. This book moves beyond these artificial categorizations, showing how environmental sorting, dispersal, ecological drift, and other processes influence metacommunity structure simultaneously. Mathew Leibold and Jonathan Chase argue that the relative importance of these processes depends on the characteristics of the organisms, the strengths and types of their interactions, the degree of habitat heterogeneity, the rates of dispersal, and the scale at which the system is observed. Using this synthetic perspective, they explore metacommunity patterns in time and space, including patterns of coexistence, distribution, and diversity. Leibold and Chase demonstrate how these processes and patterns are altered by micro- and macroevolution, traits and phylogenetic relationships, and food web interactions. They then use this scale-explicit perspective to illustrate how metacommunity processes are essential for understanding macroecological and biogeographical patterns as well as ecosystem-level processes. Moving seamlessly across scales and subdisciplines, Metacommunity Ecology is an invaluable reference, one that offers a more integrated approach to ecological patterns and processes.
Ecology, Genetics and Evolution of Metapopulations is acollection of specially commissioned articles that looks at fragmented habitats, bringing together recent theoretical advances and empirical studies applying the metapopulation approach. Several chapters closely integrate ecology with genetics and evolutionary biology, and others illustrate how metapopulation concepts and models can be applied to answer questions about conservation, epidemiology, and speciation. The extensive coverage of theory from highly regarded scientists and the many substantive applications in this one-of-a-kind work make it invaluable to graduate students and researchers in a wide range of disciplines. - Provides a comprehensive and authoritative account of all aspects of metapopulation biology, integrating ecology, genetics, and evolution - Developed by recognized experts, including Hanski who won the Balzan Prize for Ecological Sciences - Covers novel applications of the metapopulation approach to conservation
Community ecology has undergone a transformation in recent years, from a discipline largely focused on processes occurring within a local area to a discipline encompassing a much richer domain of study, including the linkages between communities separated in space (metacommunity dynamics), niche and neutral theory, the interplay between ecology and evolution (eco-evolutionary dynamics), and the influence of historical and regional processes in shaping patterns of biodiversity. To fully understand these new developments, however, students continue to need a strong foundation in the study of species interactions and how these interactions are assembled into food webs and other ecological networks. This new edition fulfils the book's original aims, both as a much-needed up-to-date and accessible introduction to modern community ecology, and in identifying the important questions that are yet to be answered. This research-driven textbook introduces state-of-the-art community ecology to a new generation of students, adopting reasoned and balanced perspectives on as-yet-unresolved issues. Community Ecology is suitable for advanced undergraduates, graduate students, and researchers seeking a broad, up-to-date coverage of ecological concepts at the community level.
Intermittent Rivers and Ephemeral Streams: Ecology and Management takes an internationally broad approach, seeking to compare and contrast findings across multiple continents, climates, flow regimes, and land uses to provide a complete and integrated perspective on the ecology of these ecosystems. Coupled with this, users will find a discussion of management approaches applicable in different regions that are illustrated with relevant case studies. In a readable and technically accurate style, the book utilizes logically framed chapters authored by experts in the field, allowing managers and policymakers to readily grasp ecological concepts and their application to specific situations. - Provides up-to-date reviews of research findings and management strategies using international examples - Explores themes and parallels across diverse sub-disciplines in ecology and water resource management utilizing a multidisciplinary and integrative approach - Reveals the relevance of this scientific understanding to managers and policymakers
Metacommunity ecology links smaller-scale processes that have been the provenance of population and community ecology—such as birth-death processes, species interactions, selection, and stochasticity—with larger-scale issues such as dispersal and habitat heterogeneity. Until now, the field has focused on evaluating the relative importance of distinct processes, with niche-based environmental sorting on one side and neutral-based ecological drift and dispersal limitation on the other. This book moves beyond these artificial categorizations, showing how environmental sorting, dispersal, ecological drift, and other processes influence metacommunity structure simultaneously. Mathew Leibold and Jonathan Chase argue that the relative importance of these processes depends on the characteristics of the organisms, the strengths and types of their interactions, the degree of habitat heterogeneity, the rates of dispersal, and the scale at which the system is observed. Using this synthetic perspective, they explore metacommunity patterns in time and space, including patterns of coexistence, distribution, and diversity. Leibold and Chase demonstrate how these processes and patterns are altered by micro- and macroevolution, traits and phylogenetic relationships, and food web interactions. They then use this scale-explicit perspective to illustrate how metacommunity processes are essential for understanding macroecological and biogeographical patterns as well as ecosystem-level processes. Moving seamlessly across scales and subdisciplines, Metacommunity Ecology is an invaluable reference, one that offers a more integrated approach to ecological patterns and processes.
The major subdisciplines of ecology--population ecology, community ecology, ecosystem ecology, and evolutionary ecology--have diverged increasingly in recent decades. What is critically needed today is an integrated, real-world approach to ecology that reflects the interdependency of biodiversity and ecosystem functioning. From Populations to Ecosystems proposes an innovative theoretical synthesis that will enable us to advance our fundamental understanding of ecological systems and help us to respond to today's emerging global ecological crisis. Michel Loreau begins by explaining how the principles of population dynamics and ecosystem functioning can be merged. He then addresses key issues in the study of biodiversity and ecosystems, such as functional complementarity, food webs, stability and complexity, material cycling, and metacommunities. Loreau describes the most recent theoretical advances that link the properties of individual populations to the aggregate properties of communities, and the properties of functional groups or trophic levels to the functioning of whole ecosystems, placing special emphasis on the relationship between biodiversity and ecosystem functioning. Finally, he turns his attention to the controversial issue of the evolution of entire ecosystems and their properties, laying the theoretical foundations for a genuine evolutionary ecosystem ecology. From Populations to Ecosystems points the way to a much-needed synthesis in ecology, one that offers a fuller understanding of ecosystem processes in the natural world.
Reflecting the recent surge of activity in food web research fueled by new empirical data, this authoritative volume successfully spans and integrates the areas of theory, basic empirical research, applications, and resource problems. Written by recognized leaders from various branches of ecological research, this work provides an in-depth treatment of the most recent advances in the field and examines the complexity and variability of food webs through reviews, new research, and syntheses of the major issues in food web research. Food Webs features material on the role of nutrients, detritus and microbes in food webs, indirect effects in food webs, the interaction of productivity and consumption, linking cause and effect in food webs, temporal and spatial scales of food web dynamics, applications of food webs to pest management, fisheries, and ecosystem stress. Three comprehensive chapters synthesize important information on the role of indirect effects, productivity and consumer regulation, and temporal, spatial and life history influences on food webs. In addition, numerous tables, figures, and mathematical equations found nowhere else in related literature are presented in this outstanding work. Food Webs offers researchers and graduate students in various branches of ecology an extensive examination of the subject. Ecologists interested in food webs or community ecology will also find this book an invaluable tool for understanding the current state of knowledge of food web research.