Download Free Metabolic Alterations In Neurodegenerative Disorders Book in PDF and EPUB Free Download. You can read online Metabolic Alterations In Neurodegenerative Disorders and write the review.

Impairment of energy metabolism is a hallmark of brain aging and several neurodegenerative diseases, such as the Alzheimer’s disease (AD). Age- and disease-related hypometabolism is commonly associated with oxidative stress and they are both regarded as major contributors to the decline in synaptic plasticity and cognition. Neuroinflammatory changes, entailing microglial activation and elevated expression of inflammatory cytokines, also correlate with age-related cognitive decline. It is still under debate whether the mitochondrial dysfunction-induced metabolic deficits or the microglia activation-mediated neuroinflammation is the initiator of the cognitive changes in aging and AD. Nevertheless, multiple lines of evidence support the notion that mitochondrial dysfunction and chronic inflammation exacerbate each other, and these mechanistic diversities have cellular redox dysregulation as a common denominator. This research topic focuses on the role of a metabolic-inflammatory axis encompassing the bioenergetic activity, brain inflammatory responses and their redox regulation in healthy brain aging and neurodegenerative diseases. Dynamic interactions among these systems are reviewed in terms of their causative or in-tandem occurrence and how the systemic environment, –e.g., insulin resistance, diabetes, and systemic inflammation–, impacts on brain function.
This book presents a systematic and extensive understanding about metabolic alterations affecting multiple aspects of different neurodegenerative diseases (NDDs), such as Alzheimer’s, Parkinson’s, Huntington’s disease, SCAs, SBMA, DRPLA, ALS, Freidrich Ataxia etc. The book also illustrates cellular and molecular mechanisms behind the key neurodegenerative diseases and further expands on concept of unique and developing biomarkers associated with the onset and progression of NDDs. Additionally, it elaborates on the concept of latest imaging tools to monitor state of NDDs and accordingly develop therapeutic approaches entailing phytochemicals in the management of metabolic alterations associated with NDDs that ultimately suppresses course of devastating NDDs. The book aids to improve the overall understanding about the NDD and involvement of metabolic disorder as a major factor for indisposition of the disease. Therefore, suggesting that targetting metabolic variations by phytochemicals can combat NDD related symptoms for the betterment of impacted patients. While introducing cellular and molecular mechanisms and the treatment regimen under the umbrella of metabolism in several NDDs, the book covers major aspects of understanding the metabolic basis of NDDs, its implications, and treatment. This will inflate the readers' understanding about this particular area and guide those working in this domain, be it a researcher or clinicians,to choose or design effective therapeutic strategies to curb metabolic alterations linked with these disorders. This book will not only contribute towards improving the overall state of the challenged individuals but will also bring new hope towards improving the quality of lives of affected patients.
Metabolic Drivers and Bioenergetic Components of Neurodegenerative Disease summarizes recent developments in intervention trials in neurodegenerative diseases, particularly Alzheimer’s and Parkinson’s, as well as increasing evidence for the overlap between drivers of metabolic and neurodegenerative disease that impact mitochondrial function and bioenergetics, and subsequently cellular function and pathophysiology. Topics covered include Brain Glucose and Ketone Utilization in Brain Ageing and Neurodegenerative Diseases; the Mitochondrial Hypothesis: Dysfunction, Bioenergetic Defects, and the Metabolic Link to Alzheimer’s Disease; the Metabolic Impact on Neuroinflammation and Microglial Modulation in Neurodegenerative Diseases, the Impact of Circadian and Diurnal Rhythms on Cellular Metabolic Function and Neurodegenerative Diseases, and much more. Summarizes the current status of and future research in Alzheimer’s and Parkinson’s diseases Reviews the impact of the metabolic hypothesis on underlying mechanisms of neurodegenerative diseases
This open access book offers an essential overview of brain, head and neck, and spine imaging. Over the last few years, there have been considerable advances in this area, driven by both clinical and technological developments. Written by leading international experts and teachers, the chapters are disease-oriented and cover all relevant imaging modalities, with a focus on magnetic resonance imaging and computed tomography. The book also includes a synopsis of pediatric imaging. IDKD books are rewritten (not merely updated) every four years, which means they offer a comprehensive review of the state-of-the-art in imaging. The book is clearly structured and features learning objectives, abstracts, subheadings, tables and take-home points, supported by design elements to help readers navigate the text. It will particularly appeal to general radiologists, radiology residents, and interventional radiologists who want to update their diagnostic expertise, as well as clinicians from other specialties who are interested in imaging for their patient care.
This edition of Advances in Neurobiology brings together experts in the emerging field of Systems Neuroscience to present an overview of this area of research. Topics covered include: how different neural circuits analyze sensory information, form perceptions of the external world, make decisions, and execute movements; how nerve cells behave when connected together to form neural networks; the relationship between molecular and cellular approaches to understanding brain structure and function; the study of high-level mental functions; and studying brain pathologies and diseases with Systems Neuroscience. A hierarchy of biological complexity arises from the genome, transcriptome, proteome, organelles, cells, synapses, circuits, brain regions, the whole brain, and behaviour. The best way to study the brain, the most complex organ in the body composed of 100 billion cells with trillions of interconnections, is with a Systems Biology approach. Systems biology is an inter-disciplinary field that focuses on complex interactions within biological systems to reveal 'emergent properties' - properties of cells and groups of cells functioning as a system whose actual and theoretical description is only possible using Systems Biology techniques.
The editor of this volume, having research interests in the field of ROS production and the damage to cellular systems, has identified a number of enzymes showing ·OH scavenging activities details of which are anticipated to be published in the near future as confirmatory experiments are awaited. It is hoped that the information presented in this book on NDs will stimulate both expert and novice researchers in the field with excellent overviews of the current status of research and pointers to future research goals. Clinicians, nurses as well as families and caregivers should also benefit from the material presented in handling and treating their specialised cases. Also the insights gained should be valuable for further understanding of the diseases at molecular levels and should lead to development of new biomarkers, novel diagnostic tools and more effective therapeutic drugs to treat the clinical problems raised by these devastating diseases.
It has become evident over the last years that abnormalities in RNA processing play a fundamental part in the pathogenesis of neurodegenerative diseases. Cellular viability depends on proper regulation of RNA metabolism and subsequent protein synthesis, which requires the interplay of many processes including transcription, pre--‐mRNA splicing, mRNA editing as well as mRNA stability, transport and translation. Dysfunction in any of these processes, often caused by mutations in the coding and non--‐ coding RNAs, can be very destructive to the cellular environment and consequently impair neural viability. The result of this RNA toxicity can lead to a toxic gain of function or a loss of function, depending on the nature of the mutation. For example, in repeat expansion disorders, such as the newly discovered hexanucleotide repeat expansion in theC9orf72 gene found in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), a toxic gain of function leads to the formation of RNA foci and the sequestration of RNA binding proteins (RBPs). This in return leads to a loss of function of those RBPs, which is hypothesized to play a significant part in the disease progression of ALS and FTD. Other toxicities arising from repeat expansions are the formation of RNA foci, bi--‐directional transcription and production of repeat associated non--‐ATG (RAN) translation products. This book will touch upon most of these disease mechanisms triggered by aberrant RNA metabolism and will therefore provide a broad perspective of the role of RNA processing and its dysfunction in a variety of neurodegenerative disorders, including ALS, FTD, Alzheimer’s disease, Huntington’s disease, spinal muscular atrophy, myotonic dystrophy and ataxias. The proposed authors are leading scientists in the field and are expected to not only discuss their own work, but to be inclusive of historic as well as late breaking discoveries. The compiled chapters will therefore provide a unique collection of novel studies and hypotheses aimed to describe the consequences of altered RNA processing events and its newest molecular players and pathways.
Numerous studies have established a clear connection between neuronal oxidative stress and several neurodegenerative diseases, with consequential damages to lipids, proteins, nucleic acids, etc. In addition, several modifications indicative of oxidative stress have been described in association with neurons, neurofibrillary tangles and senile plaques in Alzheimer's disease, including advanced glycation end products and free carbonyl oxidation.Oxidative damage and antioxidant responses are now well characterized, but sources of damaging free radicals are yet to be fully understood. Evidences of alteration in metal ions metabolism have been reported in various diseases like Alzheimer's, Wilson, Menkes, Prion, Pick, Huntington disease, epilepsy and other pathological events. Thus, metal ions play a pivotal role in neurodegenerative phenomena.Chelation therapy is still in the early days of its development, but research in this area could lead to new products that could revolutionize treatment. Two international conferences on ?Metals and the Brain: From Neurochemistry to Neurodegeneration? (Padova, Italy, 2000 and Fez, Morocco, 2002) were recently held to discuss the role of metal ions in neurophysiopathology. A third will be held in 2005 in Johannesburg, South Africa.This book follows the same train of thought as those conferences, in order to highlight the unquestionable importance of metal ions in the research on the neurophysiopathology of neurodegenerative diseases. The excellent reputation of the scientists who have contributed to this project ensures the quality of the chapters presented here, and hopefully this will help spur new research initiatives in the field, which is still in its infancy.