Download Free Mesoplasticity And Its Applications Book in PDF and EPUB Free Download. You can read online Mesoplasticity And Its Applications and write the review.

This monograph written by two Chinese scientists of the younger generation opens a window into the world of thoughts on Mechanical Metallurgy in this fascinating area of our world, characterized by age old cultural heritage as weil as by its dynamic evolution into the future. Based on notions and names all so familiar to the western scientist, and regarding the subject from the point of view of the theoretical mechanical engineer (Yang) as weil as that of the materials and manufacturing engineer (Lee), the authors present a synthesis of both approaches and endeavour to guide the reader from basic theory to engineering applications. Between structural defects in the micrometer scale and the meter-measures of engineering components, the term of mesoplasticity is meant to place the reader right in the center: This is certainly achallenging enterprise, and the editor expresses his sincere wishes as to enrichment and stimulation which will emanate from this interesting book and its creative perspective. Prof. B. Ilschner March, 1993. Preface In the past two decades, enormous advances in materials and manufacturing tech nology have been achieved, which upgrade the material design, processing and precision manufacturing as quantitative and concise scientific disciplines. Rapid improvements on mechanics understanding have been instrumental in the above mentioned development. A topic of great interest and importance in plasticity re search has been the design and processing of materials themselves on the mesoscale to achieve the desired macroscopic properties.
Classical plasticity is a well established domain of mechanics and engineering, providing the basis for many engineering structural design, manufacturing processes and natural phenomena. New important characteristics are emerging in the interdisciplinary approach of micro-, meso- and macro-mechanics, and through analysis, experiments and computation.The interaction of mechanics and materials scientists is introducing tremendous changes in the two disciplines, so that the possibility of materials being processed on the microscale to achieve the desired macroscopic properties is rapidly approaching.A comprehensive overview on the latest developments in both macroplasticity and microplasticity theories, their interactions and applications in various engineering disciplines such as solid mechanics, structural analysis and geo-mechanics, materials science and technology, and metal forming and machining, is given in this volume. Case studies written by international experts focus on aspects such as the applications of plasticity in interdisciplinary and non-conventional areas. The 150 papers provide a current and useful reference source on the latest advances for both research workers and engineers in the various fields of plasticity.
Volume is indexed by Thomson Reuters CPCI-S (WoS). These proceedings comprise the 192 papers which were presented at the Seventh Asia-Pacific Symposium on Engineering Plasticity and Its applications (AEPA2004), held on the 22nd to 26th September 2004 at Shanghai Jiaotong University, P.R.China.
AEPA '96 provides a forum for discussion on the state-of-art developments in plasticity. Anemphasis is placed on the close interaction of the theories from macroplasticity,mesoplasticity and microplasticity together with their applications in various engineeringdisciplines such as solid mechanics, metal forming, structural analysis, geo-mechanics andmicromechanics. These proceedings include over 140 papers from the conference includingcase studies showing applications of plasticity in inter-disciplinary or nonconventional areas.
Mechanical engineering, an engineering discipline forged and shaped by the needs of the industrial revolution, is once again asked to do its substantial share in the call for industrial renewal. The general call is urgent as we face profound issues of productivity and competitiveness that require engineering solutions, among others . The Mechanical Engineering Series features graduate texts and research monographs intended to address the need for information in contemporary areas of mechanical engineering. The series is conceived as a comprehensive one that covers a broad range of c- centrations important to mechanical engineering graduate education and research . We are fortunate to have a distinguished roster of consulting editors on the ad- sory board, each an expert in one of the areas of concentration . The names of the consulting editors are listed on the facing page of this volume . The areas of conc- tration are applied mechanics, biomechanics, computational mechanics, dynamic systems and control, energetics , mechanics of materials, processing, production systems, thermal science, and tribology .
This book presents an in-depth study and elucidation on the mechanisms of the micro-cutting process, with particular emphasis and a novel viewpoint on materials characterization and its influences on ultra-precision machining. Ultra-precision single point diamond turning is a key technology in the manufacture of mechanical, optical and opto-electronics components with a surface roughness of a few nanometers and form accuracy in the sub-micrometric range. In the context of subtractive manufacturing, ultra-precision diamond turning is based on the pillars of materials science, machine tools, modeling and simulation technologies, etc., making the study of such machining processes intrinsically interdisciplinary. However, in contrast to the substantial advances that have been achieved in machine design, laser metrology and control systems, relatively little research has been conducted on the material behavior and its effects on surface finish, such as the material anisotropy of crystalline materials. The feature of the significantly reduced depth of cut on the order of a few micrometers or less, which is much smaller than the average grain size of work-piece materials, unavoidably means that conventional metal cutting theories can only be of limited value in the investigation of the mechanisms at work in micro-cutting processes in ultra-precision diamond turning.
Reviewing an extensive array of procedures in hot and cold forming, casting, heat treatment, machining, and surface engineering of steel and aluminum, this comprehensive reference explores a vast range of processes relating to metallurgical component design-enhancing the production and the properties of engineered components while reducing manufacturing costs. It surveys the role of computer simulation in alloy design and its impact on material structure and mechanical properties such as fatigue and wear. It also discusses alloy design for various materials, including steel, iron, aluminum, magnesium, titanium, super alloy compositions and copper.
- self-contained and well illustrated - complete and comprehensive derivation of mechanical/mathematical results with enphasis on issues of practical importance - combines classical subjects of fracture mechanics with modern topics such as microheterogeneous materials, piezoelectric materials, thin films, damage - mechanically and mathematically clear and complete derivations of results
This volume contains the papers presented at the IUT AM Symposium of "Mesoscopic Dynamics of Fracture Process and Materials Strength", held in July 2003, at the Hotel Osaka Sun Palace, Osaka, Japan. The Symposium was proposed in 2001, aiming at organizing concentrated discussions on current understanding of fracture process and inhomogeneous deformation governing the materials strength with emphasis on the mesoscopic dynamics associated with evolutional mechanical behaviour under micro/macro mutual interaction. The decision of the General Assembly of International Union of Theoretical and Applied Mechanics (IUT AM) to accept our proposal was well-timed and attracted attention. Driven by the development of new theoretical and computational techniques, various novel challenges to investigate the mesoscopic dynamics have been actively done recently, including large-scaled 3D atomistic simulations, discrete dislocation dynamics and other micro/mesoscopic computational analyses. The Symposium attracted sixty-six participants from eight countries, and forty two papers were presented. The presentations comprised a wide variety of fundamental subjects of physics, mechanical models, computational strategies as well as engineering applications. Among the subjects, discussed are (a) dislocation patterning, (b) crystal plasticity, (c) characteristic fracture of amorphous/nanocrystal, (d) nano-indentation, (e) ductile-brittle transition, (f) ab-initio calculation, (g) computational methodology for multi-scale analysis and others.