Download Free Meromorphic Functions And Analytic Curves Am 12 Book in PDF and EPUB Free Download. You can read online Meromorphic Functions And Analytic Curves Am 12 and write the review.

The description for this book, Meromorphic Functions and Analytic Curves. (AM-12), will be forthcoming.
This book contains an exposition of the theory of meromorphic functions and linear series on a compact Riemann surface. Thus the main subject matter consists of holomorphic maps from a compact Riemann surface to complex projective space. Our emphasis is on families of meromorphic functions and holomorphic curves. Our approach is more geometric than algebraic along the lines of [Griffiths-Harrisl]. AIso, we have relied on the books [Namba] and [Arbarello-Cornalba-Griffiths-Harris] to agreat exten- nearly every result in Chapters 1 through 4 can be found in the union of these two books. Our primary motivation was to understand the totality of meromorphic functions on an algebraic curve. Though this is a classical subject and much is known about meromorphic functions, we felt that an accessible exposition was lacking in the current literature. Thus our book can be thought of as a modest effort to expose parts of the known theory of meromorphic functions and holomorphic curves with a geometric bent. We have tried to make the book self-contained and concise which meant that several major proofs not essential to further development of the theory had to be omitted. The book is targeted at the non-expert who wishes to leam enough about meromorphic functions and holomorphic curves so that helshe will be able to apply the results in hislher own research. For example, a differential geometer working in minimal surface theory may want to tind out more about the distribution pattern of poles and zeros of a meromorphic function.
In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking centre stage. But the main examples come fromprojective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Dualtiy Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves andcohomology are introduced as a unifying device in the later chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one term of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-term course in complex variables or a year-long course in algebraic geometry.
A two-part volume containing a comprehensive description of the theory of entire and meromorphic functions of one complex variable and its applications, and a detailed review of recent investigations concerning the function-theoretical pecularities of polyanalytic functions (boundary behaviour, value distributions, degeneration, uniqueness etc).
"This book contains a comprehensive exposition of the Nevanlinna theory of meromorphic functions of one complex variable, with detailed study of deficiencies, value distribution, and asymptotic properties of meromorphic functions." "The main body of the book is a translation of the Russian original published in 1970, which has been one of the most popular sources in this field since then. New references and footnotes related to recent achievements in the topics considered in the original edition have been added and a few corrections made. A new Appendix with a survey of the results obtained after 1970 and extensive bibliography has been written by Alexandre Ermenko and James K. Langley for this English edition." "The only prerequisite for understanding material of this book is an undergraduate course in the theory of functions of one complex variable."--BOOK JACKET.
This book was originally written in Chinese in 1986 by the noted complex analyst Zhang Guan-Hou, who was a research fellow at the Academia Sinica. The book provides a basic introduction to the development of the theory of entire and meromorphic functions from the 1950s to the early 1980s. After an opening chapter introducing fundamentals of Nevanlinna's value distribution theory, this book discusses various relationships among and developments of three central concepts: deficient value, asymptotic value, and singular direction. This book describes many significant results and research directions developed by Zhang and other Chinese complex analysts and published in Chinese mathematical journals. A comprehensive and self-contained reference, this book is useful for graduate students and researchers in complex analysis.
This book discusses a variety of topics in mathematics and engineering as well as their applications, clearly explaining the mathematical concepts in the simplest possible way and illustrating them with a number of solved examples. The topics include real and complex analysis, special functions and analytic number theory, q-series, Ramanujan’s mathematics, fractional calculus, Clifford and harmonic analysis, graph theory, complex analysis, complex dynamical systems, complex function spaces and operator theory, geometric analysis of complex manifolds, geometric function theory, Riemannian surfaces, Teichmüller spaces and Kleinian groups, engineering applications of complex analytic methods, nonlinear analysis, inequality theory, potential theory, partial differential equations, numerical analysis , fixed-point theory, variational inequality, equilibrium problems, optimization problems, stability of functional equations, and mathematical physics. It includes papers presented at the 24th International Conference on Finite or Infinite Dimensional Complex Analysis and Applications (24ICFIDCAA), held at the Anand International College of Engineering, Jaipur, 22–26 August 2016. The book is a valuable resource for researchers in real and complex analysis.
Many properties of minimal surfaces are of a global nature, and this is already true for the results treated in the first two volumes of the treatise. Part I of the present book can be viewed as an extension of these results. For instance, the first two chapters deal with existence, regularity and uniqueness theorems for minimal surfaces with partially free boundaries. Here one of the main features is the possibility of "edge-crawling" along free parts of the boundary. The third chapter deals with a priori estimates for minimal surfaces in higher dimensions and for minimizers of singular integrals related to the area functional. In particular, far reaching Bernstein theorems are derived. The second part of the book contains what one might justly call a "global theory of minimal surfaces" as envisioned by Smale. First, the Douglas problem is treated anew by using Teichmüller theory. Secondly, various index theorems for minimal theorems are derived, and their consequences for the space of solutions to Plateau ́s problem are discussed. Finally, a topological approach to minimal surfaces via Fredholm vector fields in the spirit of Smale is presented.
The present monograph grew out of the fifth set of Hermann Weyl Lectures, given by Professor Griffiths at the Institute for Advanced Study, Princeton, in fall 1974. In Chapter 1 the author discusses Emile Borel's proof and the classical Jensen theorem, order of growth of entire analytic sets, order functions for entire holomorphic mappings, classical indicators of orders of growth, and entire functions and varieties of finite order. Chapter 2 is devoted to the appearance of curvature, and Chapter 3 considers the defect relations. The author considers the lemma on the logarithmic derivative, R. Nevanlinna's proof of the defect relation, and refinements of the classical case.