Download Free Merger And Acquisition Target Selection Based On Interval Neutrosophic Multigranulation Rough Sets Over Two Universes Book in PDF and EPUB Free Download. You can read online Merger And Acquisition Target Selection Based On Interval Neutrosophic Multigranulation Rough Sets Over Two Universes and write the review.

As a significant business activity, merger and acquisition (M&A) generally means transactions in which the ownership of companies, other business organizations or their operating unitsaretransferredorcombined.
Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (, , ), where is an entity {i.e. element, concept, idea, theory, logical proposition, etc.}, is the opposite of , while is the neutral (or indeterminate) between them, i.e., neither nor . Based on neutrosophy, the neutrosophic triplets were founded, which have a similar form (x, neut(x), anti(x)), that satisfy several axioms, for each element x in a given set. This collective book presents original research papers by many neutrosophic researchers from around the world, that report on the state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets and their algebraic structures – that have been defined recently in 2016 but have gained interest from world researchers. Connections between classical algebraic structures and neutrosophic triplet / duplet / multiset structures are also studied. And numerous neutrosophic applications in various fields, such as: multi-criteria decision making, image segmentation, medical diagnosis, fault diagnosis, clustering data, neutrosophic probability, human resource management, strategic planning, forecasting model, multi-granulation, supplier selection problems, typhoon disaster evaluation, skin lesson detection, mining algorithm for big data analysis, etc.
In real-world diagnostic procedures, due to the limitation of human cognitive competence, a medical expert may not conveniently use some crisp numbers to express the diagnostic information, and plenty of research has indicated that generalized fuzzy numbers play a significant role in describing complex diagnostic information.
This Special Issue presents original research papers that report on state-of-the-art and recent advancements in neutrosophic sets and logic in soft computing, artificial intelligence, big and small data mining, decision making problems, and practical achievements.
Fuzzy sets have experienced multiple expansions since their conception to enhance their capacity to convey complex information. Intuitionistic fuzzy sets, image fuzzy sets, q-rung orthopair fuzzy sets, and neutrosophic sets are a few of these extensions. Researchers and academics have acquired a lot of information about their theories and methods for making decisions. However, only a small number of research findings discuss how neutrosophic sets theory and their extensions (NSTEs) are used in education. The Handbook of Research on the Applications of Neutrosophic Sets Theory and Their Extensions in Education implements fresh scientific approaches to enhance the quality of decisions under neutrosophic environments, particularly within education. Covering key topics such as data modeling, educational technologies, decision making, and learning management systems, this major reference work is ideal for instructional designers, researchers, academicians, scholars, practitioners, instructors, and students.
Every organization seeks to set strategies for its development and growth and to do this, it must take into account the factors that affect its success or failure.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
Fuzzy logic, which is based on the concept of fuzzy set, has enabled scientists to create models under conditions of imprecision, vagueness, or both at once. As a result, it has now found many important applications in almost all sectors of human activity, becoming a complementary feature and supporter of probability theory, which is suitable for modelling situations of uncertainty derived from randomness. Fuzzy mathematics has also significantly developed at the theoretical level, providing important insights into branches of traditional mathematics like algebra, analysis, geometry, topology, and more. With such widespread applications, fuzzy sets and logic are an important area of focus in mathematics. The Handbook of Research on Advances and Applications of Fuzzy Sets and Logic studies recent theoretical advances of fuzzy sets and numbers, fuzzy systems, fuzzy logic and their generalizations, extensions, and more. This book also explores the applications of fuzzy sets and logic applied to science, technology, and everyday life to further provide research on the subject. This book is ideal for mathematicians, physicists, computer specialists, engineers, practitioners, researchers, academicians, and students who are looking to learn more about fuzzy sets, fuzzy logic, and their applications.
Many professionals are facing a monumental challenge: navigating the intricate landscape of information to make impactful choices. The sheer volume and complexity of big data have ushered in a shift, demanding innovative methodologies and frameworks. Big Data Quantification for Complex Decision-Making tackles this challenge head-on, offering a comprehensive exploration of the tools necessary to distill valuable insights from datasets. This book serves as a tool for professionals, researchers, and students, empowering them to not only comprehend the significance of big data in decision-making but also to translate this understanding into real-world decision making. The central objective of the book is to examine the relationship between big data and decision-making. It strives to address multiple objectives, including understanding the intricacies of big data in decision-making, navigating methodological nuances, managing uncertainty adeptly, and bridging theoretical foundations with real-world applications. The book's core aspiration is to provide readers with a comprehensive toolbox, seamlessly integrating theoretical frameworks, practical applications, and forward-thinking perspectives. This equips readers with the means to effectively navigate the data-rich landscape of modern decision-making, fostering a heightened comprehension of strategic big data utilization. Tailored for a diverse audience, this book caters to researchers and academics in data science, decision science, machine learning, artificial intelligence, and related domains.