Download Free Membranes For Industrial Wastewater Recovery And Re Use Book in PDF and EPUB Free Download. You can read online Membranes For Industrial Wastewater Recovery And Re Use and write the review.

There is increasing political and environmental pressure on industry to clean up the water which it uses in many processes, and to re-use this water where possible. This cleaning is done using specially-developed industrial membranes and this book covers the types and design of membranes, how they work and in which industries they are used. Special attention is paid to the textile, food/ beverage, pharmaceutical, oil and pulp and paper industries where such membranes are in regular use.
In a world in which legislation promotes the recycling of wastewater new technologies are emerging that can fulfil such a remit. The papers that comprise this volume explore those technologies and explain what is driving and what is preventing their widespread implementation.
Industrial Wastewater Treatment, Recycling and Reuse is an accessible reference to assist you when handling wastewater treatment and recycling. It features an instructive compilation of methodologies, including advanced physico-chemical methods and biological methods of treatment. It focuses on recent industry practices and preferences, along with newer methodologies for energy generation through waste. The book is based on a workshop run by the Indus MAGIC program of CSIR, India. It covers advanced processes in industrial wastewater treatment, applications, and feasibility analysis, and explores the process intensification approach as well as implications for industrial applications. Techno-economic feasibility evaluation is addressed, along with a comparison of different approaches illustrated by specific case studies. Industrial Wastewater Treatment, Recycling and Reuse introduces you to the subject with specific reference to problems currently being experienced in different industry sectors, including the petroleum industry, the fine chemical industry, and the specialty chemicals manufacturing sector. Provides practical solutions for the treatment and recycling of industrial wastewater via case studies Instructive articles from expert authors give a concise overview of different physico-chemical and biological methods of treatment, cost-to-benefit analysis, and process comparison Supplies you with the relevant information to make quick process decisions
Membrane-Based Hybrid Processes for Wastewater Treatment analyzes and discusses the potential of membrane-based hybrid processes for the treatment of complex industrial wastewater, the recovery of valuable compounds, and water reutilization. In addition, recent and future trends in membrane technology are highlighted. Industrial wastewater contains a large variety of compounds, such as heavy metals, salts and nutrients, which makes its treatment challenging. Thus, the use of conventional water treatment methods is not always effective. Membrane-based hybrid processes have emerged as a promising technology to treat complex industrial wastewater. Discusses the properties, mechanisms, advantages, limitations and promising solutions of different types of membrane technologies Addresses the optimization of process parameters Describes the performance of different membranes Presents the potential of Nanotechnology to improve the treatment efficiency of wastewater treatment plants (WWTPs) Covers the application of membrane and membrane-based hybrid treatment technologies for wastewater treatment Includes forward osmosis, electrodialysis, and diffusion dialysis Considers hybrid membrane systems expanded to cover zero liquid discharge, salt recovery, and removal of trace contaminants
Presents case studies of how new membrane separation techniques are being used to minimize the environmental impact of pollution from textile, tannery, pulp and paper, metal finishing and electroplating, food, and other industries, in order to comply with increasing by stricter European standards. The 13 lectures are from an advanced course given in Sipra, Italy, in October 1992. Addressed to engineers, technical managers, and graduate students. No index. Annotation copyright by Book News, Inc., Portland, OR
This book presents a detailed discussion of the fundamentals and practical applications of membrane technology enhancement in a range of industrial processes, energy recovery, and resource recycling. To date, most books on the applications of membrane technology have mainly focused on gas pollution removal or industrial wastewater treatment. In contrast, the enhancement of various membrane processes in the areas of energy and the environment has remained largely overlooked. This book highlights recent works and industrial products using membrane technology, while also discussing experiments and modeling studies on the membrane enhancement process.
COST-EFFECTIVE MEMBRANE SOLUTIONS FOR WATER AND WASTEWATER REUSE APPLICATIONS Written by a water and wastewater industry expert with more than 35 years of experience, this book describes how membrane technology can be used alone, coupled with aerobic or anaerobic processes, or as integrated membrane systems to process treated municipal effluent or industrial wastewater for discharge, recycle, or reuse. After reviewing chemistry fundamentals and basic principles, Membrane Processes for Water Reuse covers microfiltration, ultrafiltration, nanofiltration, reverse osmosis, and membrane coupled bioprocesses. The design, sizing, and selection of membrane technologies for water recycling and reuse applications is discussed in detail. Wastewater reuse case studies and example problems illustrate the concepts presented in this practical, authoritative guide. Coverage includes: Water reuse overview Water quality Basic concepts of membrane filtration processes Low pressure membrane technology--microfiltration and ultrafiltration Diffusive membrane technologies--nanofiltration and reverse osmosis Membrane-coupled bioprocess Design of membrane systems for water recycling and reuse Future trends and challenges
Expanding water reuse-the use of treated wastewater for beneficial purposes including irrigation, industrial uses, and drinking water augmentation-could significantly increase the nation's total available water resources. Water Reuse presents a portfolio of treatment options available to mitigate water quality issues in reclaimed water along with new analysis suggesting that the risk of exposure to certain microbial and chemical contaminants from drinking reclaimed water does not appear to be any higher than the risk experienced in at least some current drinking water treatment systems, and may be orders of magnitude lower. This report recommends adjustments to the federal regulatory framework that could enhance public health protection for both planned and unplanned (or de facto) reuse and increase public confidence in water reuse.