Download Free Membrane Transport In Plants Book in PDF and EPUB Free Download. You can read online Membrane Transport In Plants and write the review.

Water Relations in Membrane Transport in Plants and Animals contains the presentations in a symposium dealing with Water Relations in Membranes in Plants and Animals, during the 27th Annual Fall Meeting of the American Physiological Society held at The University of Pennsylvania, 17-19 August 1976. The purpose of the symposium was to explore the common modes of water regulation in plants and animals. In these proceedings, the mechanisms employed to restrict water flow across plant and metazoan animal cells are described. Putative differences in mechanisms of water regulation retained by plant versus animal cells become inconsequential in the light of the numerous similarities: dependence upon bioelectric potentials maintained across cell membranes, energy dependence of uphill water movement, and solute coupling during water transport. The presentations can be organized into four. The first takes up specific mechanisms of water transport in plants. The second and third parts deal with specific mechanisms in invertebrates and vertebrates, respectively. The fourth part covers generalized mechanisms common to plants and animals.
In February, 1974, an 'International Workshop on Membrane Transport in Plants' was held at the Nuclear Research Centre, JLiI ich, West Germany. More than two hundred and fifty people, from fourteen countries, took part in this highly successful meeting. A somewhat similar meeting took place in Liverpool, England, two years ago and it became clear there that progress in the field of membrane transport in plants was now so marked that a second, and wider, meeting in Germany was more than fully justified. The members of our pro gramme committee (U. Zimmermann, Chairman, JLilich (FRG); J. Dainty,
In plant cells, the plasma membrane is a highly elaborated structure that functions as the point of exchange with adjoining cells, cell walls and the external environment. Transactions at the plasma membrane include uptake of water and essential mineral nutrients, gas exchange, movement of metabolites, transport and perception of signaling molecules, and initial responses to external biota. Selective transporters control the rates and direction of small molecule movement across the membrane barrier and manipulate the turgor that maintains plant form and drives plant cell expansion. The plasma membrane provides an environment in which molecular and macromolecular interactions are enhanced by the clustering of proteins in oligimeric complexes for more efficient retention of biosynthetic intermediates, and by the anchoring of protein complexes to promote regulatory interactions. The coupling of signal perception at the membrane surface with intracellular second messengers also involves transduction across the plasma membrane. Finally, the generation and ordering of the external cell walls involves processes mediated at the plant cell surface by the plasma membrane. This volume is divided into three sections. The first section describes the basic mechanisms that regulate all plasma membrane functions. The second describes plasma membrane transport activity. The final section of the book describes signaling interactions at the plasma membrane. These topics are given a unique treatment in this volume, as the discussions are restricted to the plasma membrane itself as much as possible. A more complete knowledge of the plasma membrane’s structure and function is essential to current efforts to increase the sustainability of agricultural production of food, fiber, and fuel crops.
Concepts of Biology is designed for the single-semester introduction to biology course for non-science majors, which for many students is their only college-level science course. As such, this course represents an important opportunity for students to develop the necessary knowledge, tools, and skills to make informed decisions as they continue with their lives. Rather than being mired down with facts and vocabulary, the typical non-science major student needs information presented in a way that is easy to read and understand. Even more importantly, the content should be meaningful. Students do much better when they understand why biology is relevant to their everyday lives. For these reasons, Concepts of Biology is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand.We also strive to show the interconnectedness of topics within this extremely broad discipline. In order to meet the needs of today's instructors and students, we maintain the overall organization and coverage found in most syllabi for this course. A strength of Concepts of Biology is that instructors can customize the book, adapting it to the approach that works best in their classroom. Concepts of Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand--and apply--key concepts.
Provides a broad coverage of how plants respond and adjust to both natural and anthrogenic environmental variables, and identifies unifying concepts spanning levels of organization from the subcellular to whole natural plant communities. Among the specific topics are climatic constraints on crop production, plants under salt and water stress, the effects of stress on the genome, and a dialectic approach to plant strategies. The 18 papers are from an October 1992 symposium (site not cited). Annotation copyright by Book News, Inc., Portland, OR
This book is devoted to the fascinating superfamily of plant ATP-binding cassette (ABC) transporters and their variety of transported substrates. It highlights their exciting biological functions, covering aspects ranging from cellular detoxification, through development, to symbiosis and defense. Moreover, it also includes a number of chapters that center on ABC transporters from non-Arabidopsis species. ABC proteins are ubiquitous, membrane-intrinsic transporters that catalyze the primary (ATP-dependent) movement of their substrates through biological membranes. Initially identified as an essential aspect of a vacuolar detoxification process, genetic work in the last decade has revealed an unexpectedly diverse variety of ABC transporter substrates, which include not only xenobiotic conjugates, but also heavy metals, lipids, terpenoids, lignols, alkaloids and organic acids. The discovery that members of the ABCB and ABCG family are involved in the movement of phytohormones has further sparked their exploration and provided a new understanding of the whole family. Accordingly, the trafficking, regulation and structure-function of ABCB-type auxin transporters are especially emphasized in this book.
Cation Transporters in Plants presents expert information on the major cation transporters, along with developments of various new strategies to cope with the adverse effects of abiotic and biotic stresses. The book will serve as a very important repository for the scientist, researcher, academician and industrialist to enhance their knowledge about cation transport in plants. Further, applications listed in the book will facilitate future developments in crop designing strategies. This comprehensive resource provides an alternative strategy for abiotic and biotic stress management in agricultural and horticultural crops. In addition, it will further improve basic knowledge om the origin and mechanism of cation homeostasis and their role in developmental transition and stress regulation. Contains in-depth knowledge about various cation transporters in plants Provides information about important macro and micronutrient cation transporters and their applications in the agricultural and biotechnology sectors Facilitates agricultural scientists and industries in future crop designing strategies Provides an alternative strategy for abiotic and biotic stress management in agricultural and horticultural crops
The study of solute transport in plants dates back to the beginnings of experimental plant physiology, but has its origins in the much earlier interests of humankind in agriculture. Given this lineage, it is not surprising that there have been many books on the transport of solutes in plants; texts on the closely related subject of mineral nutrition also commonly address the topic of ion transport. Why another book? Well, physiologists continue to make new discoveries. Particularly pertinent is the characterisation of enzymes that are able to transport protons across membranes during the hydrolysis of energy-rich bonds. These enzymes, which include the H + -A TPases, are now known to be crucial for solute transport in plants and we have given them due emphasis. From an academic point of view, the transport systems in plants are now appreciated as worthy of study in their own right-not just as an extension of those systems already much more widely investigated in animals. From a wider perspective, understanding solute transport in plants is fundamental to understanding plants and the extent to which they can be manipulated for agricultural purposes. As physiologists interested in the mechanisms of transport, we first set out in this book to examine the solutes in plants and where are they located. Our next consideration was to provide the tools by which solute movement can be understood: a vital part of this was to describe membranes and those enzymes catalysing transport.