Download Free Membrane Separations Technology Book in PDF and EPUB Free Download. You can read online Membrane Separations Technology and write the review.

The field of membrane separation technology is presently in a state of rapid growth and innovation. Many different membrane separation processes have been developed during the past half century and new processes are constantly emerging from academic, industrial, and governmental laboratories. While new membrane separation processes are being conceived with remarkable frequency, existing processes are also being constantly improved in order to enhance their economic competitiveness. Significant improvements are currently being made in many aspects of membrane separation technology: in the development of new membrane materials with higher selectivity and/or permeability, in the fabrication methods for high-flux asymmetric or composite membranes, in membrane module construction and in process design. Membrane separation technology is presently being used in an impressive variety of applications and has generated businesses totalling over one billion U.S. dollars annually.The main objective of this book is to present the principles and applications of a variety of membrane separation processes from the unique perspectives of investigators who have made important contributions to their fields. Another objective is to provide the reader with an authoritative resource on various aspects of this rapidly growing technology. The text can be used by someone who wishes to learn about a general area of application as well as by the knowledgeable person seeking more detailed information.
Membrane science and technology is an expanding field and has become a prominent part of many activities within the process industries. It is relatively easy to identify the success stories of membranes such as desali nation and microfiltration and to refer to others as developing areas. This, however, does not do justice to the wide field of separations in which membranes are used. No other 'single' process offers the same potential and versatility as that of membranes. The word separation classically conjures up a model of removing one component or species from a second component, for example a mass transfer process such as distillation. In the field of synthetic membranes, the terminology 'separation' is used in a wider context. A range of separations of the chemical/mass transfer type have developed around the use of membranes including distillation, extraction, absorption, adsorption and stripping, as well as separations of the physical type such as filtration. Synthetic membranes are an integral part of devices for analysis, energy generation and reactors (cells) in the electrochemical industry.
The petroleum, natural gas, and the chemical & petrochemical process industries, variously require the separation of mixtures -- whether of raw feedstream materials, reactants, intermediates, or products -- as comprising gases, liquids, or solutions. Membrane separations add another weapon to the arsenal of separation methods, including the upgrading of subquality natural gas reserves. This book furnishes the necessary derivations and calculations for numerically predicting the separations that can be obtained, based on the known respective membrane permeabilities of the pure components. A verstile text, Membrane Separations Technology is suitable both as a reference and a textbook for the practicing process engineer, the researcher, and chemical & petrochemical engineering faculty and students. - Has cutting-edge scientific methods for liquifying and transporting natural gas - Written for the engineer in the field, for easy access to important information - Also contains problems and solutions for the student and professor in chemical engineering departments
Separation of Functional Molecules in Food by Membrane Technology deals with an issue that is becoming a new research trend in the field of food and bioproducts processing. The book fills in the gap of transfer knowledge between academia and industry by highlighting membrane techniques and applications for the separation of food components in bioresources, discussing separation mechanisms, balancing advantages and disadvantages, and providing relevant applications. Edited by Charis Galanakis, the book is divided in 13 chapters written by experts from the meat science, food technology and engineering industries. - Covers the 13 most relevant topics of functional macro and micro molecules separation using membrane technology in the food industry - Brings the most recent advances in the field of membrane processing - Presents the sustainability principles of the food industry and the modern bioeconomy frame of our times
The Handbook of Membrane Separations: Chemical, Pharmaceutical, and Biotechnological Applications provides detailed information on membrane separation technologies as they have evolved over the past decades. To provide a basic understanding of membrane technology, this book documents the developments dealing with these technologies. It explores chemical, pharmaceutical, food processing and biotechnological applications of membrane processes ranging from selective separation to solvent and material recovery. This text also presents in-depth knowledge of membrane separation mechanisms, transport models, membrane permeability computations, membrane types and modules, as well as membrane reactors.
Membrane Separation Processes: Theories, Problems, and Solutions provides graduate and senior undergraduate students and membrane researchers in academia and industry with the fundamental knowledge on the topic by explaining the underlying theory that is indispensable for solving problems that occur in membrane separation processes. All major membrane processes are discussed, and an economic analysis is provided. Separation processes such as RO, UF, MF, RO, PRO and MD are thoroughly discussed. During the last two decades, the scope of the R&D of membrane separation processes has been significantly broadened. Other sections in the book cover membrane contactor and membrane adsorption. In addition, hybrid systems in which two or more membrane systems are combined are now being investigated for large-scale applications. Written by renowned experts with extensive experience with industry, education and R&D who have complementary expertise In-depth coverage of the most important conventional and emerging membrane processes Provides fundamental membrane theories for solving problems in separation processes without using complicated software
The Handbook of Membrane Separations: Chemical, Pharmaceutical, Food, and Biotechnological Applications, Second Edition provides detailed information on membrane separation technologies from an international team of experts. The handbook fills an important gap in the current literature by providing a comprehensive discussion of membrane application
Table of Contents Preface Acknowledgments for the first edition Acknowledgments for the second edition 1 Overview of Membrane Science and Technology 1 2 Membrane Transport Theory 15 3 Membranes and Modules 89 4 Concentration Polarization 161 5 Reverse Osmosis 191 6 Ultrafiltration 237 7 Microfiltration 275 8 Gas Separation 301 9 Pervaporation 355 10 Ion Exchange Membrane Processes - Electrodialysis 393 11 Carrier Facilitated Transport 425 12 Medical Applications of Membranes 465 13 Other Membrane Processes 491 Appendix 523 Index 535.
The book explains fundamental and advanced topics related to the field of membrane science including extensive coverage of material selection, preparation, characterization and applications of various membranes. Explores both preparation and wide range of applications for all possible membranes, contains an exclusive chapter on functionalized membranes and incorporation of stimuli responsive membranes in each type and includes exercise problems after each chapter It also discusses new membrane operations as membrane reactors and membrane contactors
Offers a comprehensive overview of membrane science and technology from a single source Written by a renowned author with more than 40 years’ experience in membrane science and technology, and polymer science Covers all major current applications of membrane technology in two definitive volumes Includes academic analyses, applications and practical problems for each existing membrane technology Includes novel applications such as membrane reactors, hybrid systems and optical resolution as well as membrane fuel cells