Download Free Membrane Dynamics And Domains Book in PDF and EPUB Free Download. You can read online Membrane Dynamics And Domains and write the review.

The fluid-mosaic model of membrane structure formulated by Singer and Nicolson in the early 1970s has proven to be a durable concept in terms of the principles governing the organization of the constituent lipids and proteins. During the past 30 or so years a great deal of information has accumulated on the composition of various cell membranes and how this is related to the dif ferent functions that membranes perform. Nevertheless, the task of explaining particular functions at the molecular level has been hampered by lack of struc tural detail at the atomic level. The reason for this is primarily the difficulty of crystallizing membrane proteins which require strategies that differ from those used to crystallize soluble proteins. The unique exception is bacteriorhodopsin of the purple membrane of Halobacterium halobium which is interpolated into a membrane that is neither fluid nor in a mosaic configuration. To date only 50 or so membrane proteins have been characterised to atomic resolution by diffraction methods, in contrast to the vast data accumulated on soluble proteins. Another factor that has been difficult to explain is the reason why the lipid compliment of membranes is often extremely complex. Many hundreds of different molecular species of lipid can be identified in some membranes. Remarkably, the particular composition of each membrane appears to be main tained within relatively narrow limits and its identity distinguished from other morphologically-distinct membranes.
The fluid-mosaic model of membrane structure formulated by Singer and Nicolson in the early 1970s has proven to be a durable concept in terms of the principles governing the organization of the constituent lipids and proteins. During the past 30 or so years a great deal of information has accumulated on the composition of various cell membranes and how this is related to the dif ferent functions that membranes perform. Nevertheless, the task of explaining particular functions at the molecular level has been hampered by lack of struc tural detail at the atomic level. The reason for this is primarily the difficulty of crystallizing membrane proteins which require strategies that differ from those used to crystallize soluble proteins. The unique exception is bacteriorhodopsin of the purple membrane of Halobacterium halobium which is interpolated into a membrane that is neither fluid nor in a mosaic configuration. To date only 50 or so membrane proteins have been characterised to atomic resolution by diffraction methods, in contrast to the vast data accumulated on soluble proteins. Another factor that has been difficult to explain is the reason why the lipid compliment of membranes is often extremely complex. Many hundreds of different molecular species of lipid can be identified in some membranes. Remarkably, the particular composition of each membrane appears to be main tained within relatively narrow limits and its identity distinguished from other morphologically-distinct membranes.
Current Topics in Membranes is targeted toward scientists and researchers in biochemistry and molecular and cellular biology, providing the necessary membrane research to assist them in discovering the current state of a particular field and in learning where that field is heading. This volume offers an up to date presentation of current knowledge in the field of Lipid Domains. - Written by leading experts - Contains original material, both textual and illustrative, that should become a very relevant reference material - The material is presented in a very comprehensive manner - Both researchers in the field and general readers should find relevant and up-to-date information
Endocytosis is a fundamental cellular process by means of which cells internalize extracellular and plasma membrane cargos for recycling or degradation. It is important for the establishment and maintenance of cell polarity, subcellular signaling and uptake of nutrients into specialized cells, but also for plant cell interactions with pathogenic and symbiotic microbes. Endocytosis starts by vesicle formation at the plasma membrane and progresses through early and late endosomal compartments. In these endosomes cargo is sorted and it is either recycled back to the plasma membrane, or degraded in the lytic vacuole. This book presents an overview of our current knowledge of endocytosis in plants with a main focus on the key molecules undergoing and regulating endocytosis. It also provides up to date methodological approaches as well as principles of protein, structural lipid, sugar and microbe internalization in plant cells. The individual chapters describe clathrin-mediated and fluid-phase endocytosis, as well as flotillin-mediated endocytosis and internalization of microbes. The book was written for a broad spectrum of readers including students, teachers and researchers.
Cell Membrane Nanodomains: From Biochemistry to Nanoscopy describes recent advances in our understanding of membrane organization, with a particular focus on the cutting-edge imaging techniques that are making these new discoveries possible. With contributions from pioneers in the field, the book explores areas where the application of these novel techniques reveals new concepts in biology. It assembles a collection of works where the integration of membrane biology and microscopy emphasizes the interdisciplinary nature of this exciting field. Beginning with a broad description of membrane organization, including seminal work on lipid partitioning in model systems and the roles of proteins in membrane organization, the book examines how lipids and membrane compartmentalization can regulate protein function and signal transduction. It then focuses on recent advances in imaging techniques and tools that foster further advances in our understanding of signaling nanoplatforms. The coverage includes several diffraction-limited imaging techniques that allow for measurements of protein distribution/clustering and membrane curvature in living cells, new fluorescent proteins, novel Laurdan analyses, and the toolbox of labeling possibilities with organic dyes. Since superresolution optical techniques have been crucial to advancing our understanding of cellular structure and protein behavior, the book concludes with a discussion of technologies that are enabling the visualization of lipids, proteins, and other molecular components at unprecedented spatiotemporal resolution. It also explains the ins and outs of the rapidly developing high- or superresolution microscopy field, including new methods and data analysis tools that exclusively pertain to these techniques. This integration of membrane biology and advanced imaging techniques emphasizes the interdisciplinary nature of this exciting field. The array of contributions from leading world experts makes this book a valuable tool for the visualization of signaling nanoplatforms by means of cutting-edge optical microscopy tools.
This volume contains a comprehensive overview of peptide-lipid interactions by leading researchers. The first part covers theoretical concepts, experimental considerations, and thermodynamics. The second part presents new results obtained through site-directed EPR, electron microscopy, NMR, isothermal calorimetry, and fluorescence quenching. The final part covers problems of biological interest, including signal transduction, membrane transport, fusion, and adhesion. Key Features * world-renowned experts * state-of-the-art experimental methods * monolayers, bilayers, biological membranes * theoretical aspects and computer simulations * rafts * synaptic transmission * membrane fusion * signal transduction
This book mainly focuses on key aspects of biomembranes that have emerged over the past 15 years. It covers static and dynamic descriptions, as well as modeling for membrane organization and shape at the local and global (at the cell level) scale. It also discusses several new developments in non-equilibrium aspects that have not yet been covered elsewhere. Biological membranes are the seat of interactions between cells and the rest of the world, and internally, they are at the core of complex dynamic reorganizations and chemical reactions. Despite the long tradition of membrane research in biophysics, the physics of cell membranes as well as of biomimetic or synthetic membranes is a rapidly developing field. Though successful books have already been published on this topic over the past decades, none include the most recent advances. Additionally, in this domain, the traditional distinction between biological and physical approaches tends to blur. This book gathers the most recent advances in this area, and will benefit biologists and physicists alike.
This volume brings together information on membrane organization and dynamics from a variety of spectroscopic, microscopic and simulation approaches, spanning a broad range of time scales. The implication of such dynamic information on membrane function in health and disease is a topic of contemporary interest. The chapters cover various aspects of membrane lipid and protein dynamics, explored using a battery of experimental and theoretical approaches. The synthesis of information and knowledge gained by utilizing multiple approaches will provide the reader with a comprehensive understanding of the underlying membrane dynamics and function, which will help to develop robust dynamic models for the understanding of membrane function in healthy and diseased states. In the last few years, crystal structures of an impressive number of membrane proteins have been reported, thanks to tremendous advances in membrane protein crystallization techniques. Some of these recently solved structures belong to the G protein-coupled receptor (GPCR) family, which are particularly difficult to crystallize due to their intrinsic flexibility. Nonetheless, these static structures do not provide the necessary information to understand the function of membrane proteins in the complex membrane milieu. This volume will address the dynamic nature of membrane proteins within the membrane and will provide the reader with an up-to date overview of the theory and practical approaches that can be used. This volume will be invaluable to researchers working in a wide range of scientific areas, from biochemistry and molecular biology to biophysics and protein science. Students of these fields will also find this volume very useful. This book will also be of great use to those who are interested in the dynamic nature of biological processes.
As scientist begin to understand the complexity of lipid signaling and its roles in plant biology, there is an increasing interest in their analysis. Due to the low abundancy and transient nature of some of these hydrophobic compounds, this is not always easy. In Plant Lipid Signaling Protocols, expert researchers in the field detail experimental approaches by which plant signaling lipids can be studied. These methods and techniques include analysis of plant signaling lipids, including detailed protocols to detect various relevant compounds by targeted or non-targeted approaches; to assay relevant enzyme activities in biological material or using recombinant enzymes; to test for specific binding of signaling lipids to protein partners; or to visualize signaling lipids or lipid-derived signals in living plant cells. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Plant Lipid Signaling Protocols aids plant researchers in the continuing to study the roles of lipid signals.