Download Free Melt Rheology And Its Role In Plastics Processing Book in PDF and EPUB Free Download. You can read online Melt Rheology And Its Role In Plastics Processing and write the review.

This book is designed to fulfill a dual role. On the one hand it provides a description of the rheological behavior of molten poly mers. On the other, it presents the role of rheology in melt processing operations. The account of rheology emphasises the underlying principles and presents results, but not detailed deriva tions of equations. The processing operations are described qualita tively, and wherever possible the role of rheology is discussed quantitatively. Little emphasis is given to non-rheological aspects of processes, for example, the design of machinery. The audience for which the book is intended is also dual in It includes scientists and engineers whose work in the nature. plastics industry requires some knowledge of aspects of rheology. Examples are the polymer synthetic chemist who is concerned with how a change in molecular weight will affect the melt viscosity and the extrusion engineer who needs to know the effects of a change in molecular weight distribution that might result from thermal degra dation. The audience also includes post-graduate students in polymer science and engineering who wish to acquire a more extensive background in rheology and perhaps become specialists in this area. Especially for the latter audience, references are given to more detailed accounts of specialized topics, such as constitutive relations and process simulations. Thus, the book could serve as a textbook for a graduate level course in polymer rheology, and it has been used for this purpose.
Presents rheological data on a number of polymers, making use of the master curve approach to determine unified curves for each generic type of polymer. The text offers a step-by-step procedure for developing a speadsheet computer program to obtain accurate thermoplastic rheograms at any tempertature without using sophisticated rheometres. It inclu
Explore polymer rheology from an industrial standpoint Presenting state-of-the-art polymer rheology as observed by well-recognized authors, Applied Polymer Rheology: Polymeric Fluids with Industrial Applications is designed to help readers understand the relationship between molecular structure and the flow behavior of polymers. In particular, it focuses on polymeric systems that elicit special attention from industry. Providing a comprehensive overview of the rheological characteristics of polymeric fluids, the book bridges the gap between theory and practice/application, enabling readers to see the connection between molecular structure and the behavior of the polymers studied. Beginning with a discussion of the properties, processability, and processing aids of specific polymers, later chapters examine filled polymers and composites, and the theoretical framework upon which their analysis is based. Various systems containing microstructure are presented subsequently, with the final chapter introducing paste extrusion of polytetrafluoroethylene paste. An invaluable reference guide that covers the literature and vast array of technical approaches to polymer rheology, Applied Polymer Rheology's coverage of polymeric fluids of interest to industry make it an essential resource for plastics, polymer, and chemical engineers, materials scientists, polymer chemists, and polymer physicists to use when interpreting findings and planning experiments.
This book explores the ways in which melt flow behaviour can be exploited by the plastics engineer and technician for increased efficiency of processing operation, control of end product properties and selection and development of polymers for specific purposes. (reissued with minor corrections 1994)
This book is designed to fulfill a dual role. On the one hand it provides a description of the rheological behavior of molten poly mers. On the other, it presents the role of rheology in melt processing operations. The account of rheology emphasises the underlying principles and presents results, but not detailed deriva tions of equations. The processing operations are described qualita tively, and wherever possible the role of rheology is discussed quantitatively. Little emphasis is given to non-rheological aspects of processes, for example, the design of machinery. The audience for which the book is intended is also dual in nature. It includes scientists and engineers whose work in the plastics industry requires some knowledge of aspects of rheology. Examples are the polymer synthetic chemist who is concerned with how a change in molecular weight will affect the melt viscosity and the extrusion engineer who needs to know the effects of a change in molecular weight distribution that might result from thermal degra dation. The audience also includes post-graduate students in polymer science and engineering who wish to acquire a more extensive background in rheology and perhaps become specialists in this area. Especially for the latter audience, references are given to more detailed accounts of specialized topics, such as constitutive relations and process simulations. Thus, the book could serve as a textbook for a graduate level course in polymer rheology, and it has been used for this purpose.
This review encompasses fundamental principles and rheological equations of state, polymer melt rheology (shear and extensional flow, viscoelasticity, die swell and melt fracture) and rheological c094 techniques. It describes the main plastics processing techniques, and explains the influence of polymer melt rheology upon their operation. An additional indexed section containing several hundred abstracts from the Rapra Polymer Library database provides useful references for further reading.
This is the second edition of Melt Rheology and its Role in Plastics Processing, although the title has changed to reflect its broadened scope. Advances in the recent years in rheometer technology and polymer science have greatly enhanced the usefulness of rheology in the plastics industry. It is now possible to design polymers having specific molecular structures and to predict the flow properties of melts having those structures. In addition, rheological properties now provide more precise information about molecular structure. This book provides all the information that is needed for the intelligent application of rheology in the development of new polymers, the determination of molecular structure and the correlation of processability with laboratory test data. Theory and equations are limited to what is essential for the use of rheology in the characterization of polymers, the development of new plastics materials and the prediction of plastics processing behavior. The emphasis is on information that will be of direct use to practitioners. Extensive references are provided for those wishing to pursue certain issues in greater depth. While the primary audience is applied polymer scientists and plastics engineers, the book will also be of use to postgraduate students in polymer science and engineering and as a text for a graduate course.
My heart sank when I was approached by Dr Hastings and by Professor Briggs (Senior Editor of Materials Science and Technology and Series Editor of Polymer Science and Technology Series at Chapman & Hall, respectively) to edit a book with the provisional title Handbook of Poly propylene. My reluctance was due to the fact that my former book [1] along with that of Moore [2], issued in the meantime, seemed to cover the information demand on polypropylene and related systems. Encour aged, however, by some colleagues (the new generation of scientists and engineers needs a good reference book with easy information retrieval, and the development with metallocene catalysts deserves a new update!), I started on this venture. Having some experience with polypropylene systems and being aware of the current literature, it was easy to settle the titles for the book chapters and also to select and approach the most suitable potential contributors. Fortunately, many of my first-choice authors accepted the invitation to contribute. Like all editors of multi-author volumes, I recognize that obtaining contributors follows an S-type curve of asymptotic saturation when the number of willing contributors is plotted as a function of time. The saturation point is, however, never reached and as a consequence, Dear Reader, you will also find some topics of some relevance which are not explicitly treated in this book (but, believe me, I have considered them).
The rheology of filled polymer systems is an ever expanding field in the polymer industry today. Using a concise, practical and simple format this comprehensive work explains the concepts behind filled polymer systems and the rheological techniques involved in studying their behaviour. Aware that the readers of the book may come from differing background, the first three chapters familiarize the reader with the basics about polymers, fillers and physicochemical interactions between them, rheology and rheometry. Covering such topics as preparation of filled polymer systems, steady shear viscous properties and extentional flow properties, this book covers the areas of importance from an introductory level through to more complex issues.