Download Free Medical Imaging In Clinical Practice Book in PDF and EPUB Free Download. You can read online Medical Imaging In Clinical Practice and write the review.

Choice Recommended Title, January 2021 This book, written by authors with more than a decade of experience in the design and development of artificial intelligence (AI) systems in medical imaging, will guide readers in the understanding of one of the most exciting fields today. After an introductory description of classical machine learning techniques, the fundamentals of deep learning are explained in a simple yet comprehensive manner. The book then proceeds with a historical perspective of how medical AI developed in time, detailing which applications triumphed and which failed, from the era of computer aided detection systems on to the current cutting-edge applications in deep learning today, which are starting to exhibit on-par performance with clinical experts. In the last section, the book offers a view on the complexity of the validation of artificial intelligence applications for commercial use, describing the recently introduced concept of software as a medical device, as well as good practices and relevant considerations for training and testing machine learning systems for medical use. Open problematics on the validation for public use of systems which by nature continuously evolve through new data is also explored. The book will be of interest to graduate students in medical physics, biomedical engineering and computer science, in addition to researchers and medical professionals operating in the medical imaging domain, who wish to better understand these technologies and the future of the field. Features: An accessible yet detailed overview of the field Explores a hot and growing topic Provides an interdisciplinary perspective
The discovery of x-ray, as a landmark event, enabled us to see the "invisible," opening a new era in medical diagnostics. More importantly, it offered a unique undestanding around the interaction of electromagnetic signal with human tissue and the utility of its selective absorption, scattering, diffusion, and reflection as a tool for understanding
Forlagets beskrivelse: The World Health Organization (WHO) recognizes ultrasound as an important medical diagnostic imaging technology. Manuals on ultrasound have been published by WHO since 2001, with the purpose of guiding health professionals on the safe and effective use of ultrasound. Among the diagnostic imaging technologies, ultrasound is the safer and least expensive, and technological advances are making it more user friendly and portable. Ultrasound has many uses, both diagnostic and therapeutic. For the purposes of this manual, only diagnostic ultrasound will be considered and further analysed. Basic physics of ultrasonographic imaging was released in 2005; since then, WHO has addressed the physics, safe use and different applications of ultrasound as an important diagnostic imaging tool. Since it is a non ionizing radiation technology, along with nuclear magnetic resonance imaging, the risks inherent to its use are lower than those presented by other diagnostic imaging technologies using ionizing radiation, such as the radiological technologies (X-rays and computed tomography scanners).
In general, image processing texts are intended for students of engineering and computer science, and there is little written at all on the specific requirements of medical image processing. Students of medical radiation science (Diagnostic radiography, Nuclear medicine, Radiation therapy) usually have minimal mathematical and computer science training and find the available texts incomprehensible. A text that explains the principles of image processing in minimally-mathematical language is needed for these students. Contrary to the claims of some textbook authors, the vast majority of technologists that process images do not need to understand the mathematics involved, but would nevertheless benefit from a thorough understanding of the general process.
Fundamentals of Medical Imaging, second edition, is an invaluable technical introduction to each imaging modality, explaining the mathematical and physical principles and giving a clear understanding of how images are obtained and interpreted. Individual chapters cover each imaging modality – radiography, CT, MRI, nuclear medicine and ultrasound – reviewing the physics of the signal and its interaction with tissue, the image formation or reconstruction process, a discussion of image quality and equipment, clinical applications and biological effects and safety issues. Subsequent chapters review image analysis and visualization for diagnosis, treatment and surgery. New to this edition: • Appendix of questions and answers • New chapter on 3D image visualization • Advanced mathematical formulae in separate text boxes • Ancillary website containing 3D animations: www.cambridge.org/suetens • Full colour illustrations throughout Engineers, clinicians, mathematicians and physicists will find this an invaluable aid in understanding the physical principles of imaging and their clinical applications.
This highly practical text is aimed at surgeons – both consultants and those in training who are interested in the advancing role played by imaging technology within surgical decision making. The first part of the book describes the principles of imaging, and the different imaging techniques available to the surgeon. The second part is symptom-based rather than organ-based, with the aim of providing a practical hands-on approach to imaging patients with common surgical complaints. Helpful bullet-points will assist the surgeon to better understand the imaging options available to them, and choose the correct modalities using a problem-based approach.
The present volume in the series of WHO manuals in diagnostic imaging, the Radiographic Anatomy and Interpretation of the Chest provides an exhaustive description of radiographic normal anatomy as well as the most common pathologic changes seen in the chest, focusing specifically on pulmonary and cardiac problems. The text aims to provide an aid to the interpretation of the chest radiograph (CXR). It is not a comprehensive account of all possible chest diseases but a descriptive text to help identify the way in which chest pathology is manifest and diagnosed on CXR. The initial chapters deal with interpretive skills and pattern recognition and the later chapters demonstrate specific pathologies. Backed by high-quality reproduction of radiographs, this manual will prove essential reading to general practitioners, medical specialists, radiographers, and radiologists in any medical settings, although focusing specifically on needs in small and mid-size hospitals.
A practical clinically relevant introduction to diagnostic radiology Introduction to Basic Radiology is written to provide non-radiologists with the level of knowledge necessary to order correct radiological examinations, improve image interpretation, and enhance their interpretation of various radiological manifestations. The book focuses on the clinical scenarios most often encountered in daily practice and discusses practical imaging techniques and protocols used to address common problems. Relevant case scenarios are included to demonstrate how to reach a specific diagnosis. Introduction to Basic Radiology is divided into ten chapters. The first two chapters provide basic information on various diagnostic imaging techniques and control agents. Each of the following chapters discuss imaging of specific organ systems and begin with a description of the imaging modality of choice and illustrates the relevant features to help simplify the differential diagnosis. You will also find important chapters on pediatric radiology and women's imaging. Unlike other introductory texts on the subject, this book treats diagnosis from a practical point of view. Rather than discuss various diseases and classify them from the pathologic standpoint, Introduction to Basic Radiology utilizes cases from the emergency room and physician's offices and uses a practical approach to reach a diagnosis. The cases walk you through a radiology expert’s analysis of imaging patterns. These cases are presented progressively, with the expert's thinking process described in detail. The cases highlight clinical presentation, clinical suspicion, modality of choice, radiologic technique, and pertinent imaging features of common disease processes.
Dual-energy CT is a novel, rapidly emerging imaging technique which offers important new functional and specific information. In this book, physicists and specialists from different CT manufacturers provide an insight into the technological basis of, and the different approaches to, dual-energy CT. Renowned medical scientists in the field explain the pathophysiological and molecular background of the technique, discuss its applications, provide detailed advice on how to obtain optimal results, and offer hints regarding clinical interpretation. The main focus is on the use of dual-energy CT in daily clinical practice, and individual sections are devoted to imaging of the vascular system, the thorax, the abdomen, and the extremities. Evaluations and recommendations are based on personal experience and peer-reviewed literature. Plenty of carefully chosen high-quality images are included to illustrate the clinical benefits of the technique.
This unique book fills a void in radiology interpretation texts by encompassing the foundational tools and concepts of the full range of medical imaging, including radiology, the basics of interpretation of plain radiographs, comparison with other testing modalities, the rationale for selecting the first diagnostic step, and exploration and interpretation of chest, abdomen, extremity, and spinal radiographs. A concise, easy-to-use reference, it includes written descriptions enhanced with figures, tables, and actual patient films to demonstrate concepts, and discusses--in easily accessible language--differences in testing modalities. The text also features a step-by-step guide to the interpretation of radiographs. This resource describes and compares available diagnostic modalities, including plain radiograph, CT scan, nuclear imaging, MRI, and ultrasound. It discusses pediatric considerations and includes separate chapters for the chest, abdomen, upper and lower extremities, and the cervical, thoracic, and lumbar spine. The book will be an asset to nurse practitioners and physician assistants working in all emergency, urgent, intensive, and primary care settings. It will also benefit medical students and graduate students in acute care, family, adult/gerontology, and emergency nurse practitioner programs, as well as emergency/trauma clinical nurse specialists, and hospitalists and intensivist nurse practitioners. Key Features: Integrates the basics of radiology, CT scans, nuclear imaging, MRIs, and ultrasound, their characteristics and differences among testing modalities, and basic step-by-step interpretation skills Relevant to a wide range of nurse practitioners, physician assistants, and other mid-level providers in multiple settings Includes a step-by-step guide to the interpretation of the radiographs Delivers an easy-to-understand approach to selecting diagnostic imaging tests Presents actual images and figures to demonstrate concepts, which are also available digitally