Download Free Medical Imaging For Health Professionals Book in PDF and EPUB Free Download. You can read online Medical Imaging For Health Professionals and write the review.

Describes the most common imaging technologies and their diagnostic applications so that pharmacists and other health professionals, as well as imaging researchers, can understand and interpret medical imaging science This book guides pharmacists and other health professionals and researchers to understand and interpret medical imaging. Divided into two sections, it covers both fundamental principles and clinical applications. It describes the most common imaging technologies and their use to diagnose diseases. In addition, the authors introduce the emerging role of molecular imaging including PET in the diagnosis of cancer and to assess the effectiveness of cancer treatments. The book features many illustrations and discusses many patient case examples. Medical Imaging for Health Professionals: Technologies and Clinical Applications offers in-depth chapters explaining the basic principles of: X-Ray, CT, and Mammography Technology; Nuclear Medicine Imaging Technology; Radionuclide Production and Radiopharmaceuticals; Magnetic Resonance Imaging (MRI) Technology; and Ultrasound Imaging Technology. It also provides chapters written by expert radiologists in well-explained terminology discussing clinical applications including: Cardiac Imaging; Lung Imaging; Breast Imaging; Endocrine Gland Imaging; Abdominal Imaging; Genitourinary Tract Imaging; Imaging of the Head, Neck, Spine and Brain; Musculoskeletal Imaging; and Molecular Imaging with Positron Emission Tomography (PET). Teaches pharmacists, health professionals, and researchers the basics of medical imaging technology Introduces all of the customary imaging tools—X-ray, CT, ultrasound, MRI, SPECT, and PET—and describes their diagnostic applications Explains how molecular imaging aids in cancer diagnosis and in assessing the effectiveness of cancer treatments Includes many case examples of imaging applications for diagnosing common diseases Medical Imaging for Health Professionals: Technologies and Clinical Applications is an important resource for pharmacists, nurses, physiotherapists, respiratory therapists, occupational therapists, radiological or nuclear medicine technologists, health physicists, radiotherapists, as well as researchers in the imaging field.
This unique book fills a void in radiology interpretation texts by encompassing the foundational tools and concepts of the full range of medical imaging, including radiology, the basics of interpretation of plain radiographs, comparison with other testing modalities, the rationale for selecting the first diagnostic step, and exploration and interpretation of chest, abdomen, extremity, and spinal radiographs. A concise, easy-to-use reference, it includes written descriptions enhanced with figures, tables, and actual patient films to demonstrate concepts, and discusses--in easily accessible language--differences in testing modalities. The text also features a step-by-step guide to the interpretation of radiographs. This resource describes and compares available diagnostic modalities, including plain radiograph, CT scan, nuclear imaging, MRI, and ultrasound. It discusses pediatric considerations and includes separate chapters for the chest, abdomen, upper and lower extremities, and the cervical, thoracic, and lumbar spine. The book will be an asset to nurse practitioners and physician assistants working in all emergency, urgent, intensive, and primary care settings. It will also benefit medical students and graduate students in acute care, family, adult/gerontology, and emergency nurse practitioner programs, as well as emergency/trauma clinical nurse specialists, and hospitalists and intensivist nurse practitioners. Key Features: Integrates the basics of radiology, CT scans, nuclear imaging, MRIs, and ultrasound, their characteristics and differences among testing modalities, and basic step-by-step interpretation skills Relevant to a wide range of nurse practitioners, physician assistants, and other mid-level providers in multiple settings Includes a step-by-step guide to the interpretation of the radiographs Delivers an easy-to-understand approach to selecting diagnostic imaging tests Presents actual images and figures to demonstrate concepts, which are also available digitally
Forlagets beskrivelse: The World Health Organization (WHO) recognizes ultrasound as an important medical diagnostic imaging technology. Manuals on ultrasound have been published by WHO since 2001, with the purpose of guiding health professionals on the safe and effective use of ultrasound. Among the diagnostic imaging technologies, ultrasound is the safer and least expensive, and technological advances are making it more user friendly and portable. Ultrasound has many uses, both diagnostic and therapeutic. For the purposes of this manual, only diagnostic ultrasound will be considered and further analysed. Basic physics of ultrasonographic imaging was released in 2005; since then, WHO has addressed the physics, safe use and different applications of ultrasound as an important diagnostic imaging tool. Since it is a non ionizing radiation technology, along with nuclear magnetic resonance imaging, the risks inherent to its use are lower than those presented by other diagnostic imaging technologies using ionizing radiation, such as the radiological technologies (X-rays and computed tomography scanners).
This book provides practitioners and scientists with insights into diverse aspects of structured reporting to allow them to develop tools and a knowledge base to ensure that this electronic reporting trend is widely applied. After an introduction to reporting in radiology, various parts of structured reporting are discussed in detail, including an overview of standardized reporting systems, standardized reporting language, DICOM structured reporting, template based structured reporting, and modular reporting. The last chapter addresses the interaction of structured reporting with artificial intelligence and its impact on the future of radiology. The last chapter addresses the interaction of structured reporting with artificial intelligence and its impact on the future of radiology. Endorsed by the European Society of Medical Imaging Informatics (EuSoMII), the scope of the book is based on the Medical Imaging Informatics sub-sections of the European Society of Radiology (ESR) European Training Curriculum Level I and II. It is a valuable resource for residents, radiologists and students.
Radiology Fundamentals is a concise introduction to the dynamic field of radiology for medical students, non-radiology house staff, physician assistants, nurse practitioners, radiology assistants, and other allied health professionals. The goal of the book is to provide readers with general examples and brief discussions of basic radiographic principles and to serve as a curriculum guide, supplementing a radiology education and providing a solid foundation for further learning. Introductory chapters provide readers with the fundamental scientific concepts underlying the medical use of imaging modalities and technology, including ultrasound, computed tomography, magnetic resonance imaging, and nuclear medicine. The main scope of the book is to present concise chapters organized by anatomic region and radiology sub-specialty that highlight the radiologist’s role in diagnosing and treating common diseases, disorders, and conditions. Highly illustrated with images and diagrams, each chapter in Radiology Fundamentals begins with learning objectives to aid readers in recognizing important points and connecting the basic radiology concepts that run throughout the text. It is the editors’ hope that this valuable, up-to-date resource will foster and further stimulate self-directed radiology learning—the process at the heart of medical education.
You asked for it and HPI listened! Radiology Imaging Words and Phrases contains the terms you need today and into the 21st century. Includes current terms in diagnostic imaging, interventional radiology, therapeutic radiology, nuclear medicine, neuroradiology, ultrasonography, computed tomography (CT), MRI, contrast media, imaging agents, radiopharmaceuticals.
The present volume in the series of WHO manuals in diagnostic imaging, the Radiographic Anatomy and Interpretation of the Chest provides an exhaustive description of radiographic normal anatomy as well as the most common pathologic changes seen in the chest, focusing specifically on pulmonary and cardiac problems. The text aims to provide an aid to the interpretation of the chest radiograph (CXR). It is not a comprehensive account of all possible chest diseases but a descriptive text to help identify the way in which chest pathology is manifest and diagnosed on CXR. The initial chapters deal with interpretive skills and pattern recognition and the later chapters demonstrate specific pathologies. Backed by high-quality reproduction of radiographs, this manual will prove essential reading to general practitioners, medical specialists, radiographers, and radiologists in any medical settings, although focusing specifically on needs in small and mid-size hospitals.
Zero in on a key aspect of radiology with Quality and Safety in Medical Imaging: The Essentials! Ideal as an efficient learning tool for residents as well as a quick refresher for experienced radiologists, this practical reference covers every essential feature of this important field, putting indispensable information at your fingertips in a compact, high-yield format. You’ll be brought up to date on radiation dose and safety, patient satisfaction, monitoring and reporting of complications, quality and safety in breast imaging, evidence-based radiology, quality dashboards, quality and safety in nuclear medicine, and much more.
Getting the right diagnosis is a key aspect of health care - it provides an explanation of a patient's health problem and informs subsequent health care decisions. The diagnostic process is a complex, collaborative activity that involves clinical reasoning and information gathering to determine a patient's health problem. According to Improving Diagnosis in Health Care, diagnostic errors-inaccurate or delayed diagnoses-persist throughout all settings of care and continue to harm an unacceptable number of patients. It is likely that most people will experience at least one diagnostic error in their lifetime, sometimes with devastating consequences. Diagnostic errors may cause harm to patients by preventing or delaying appropriate treatment, providing unnecessary or harmful treatment, or resulting in psychological or financial repercussions. The committee concluded that improving the diagnostic process is not only possible, but also represents a moral, professional, and public health imperative. Improving Diagnosis in Health Care, a continuation of the landmark Institute of Medicine reports To Err Is Human (2000) and Crossing the Quality Chasm (2001), finds that diagnosis-and, in particular, the occurrence of diagnostic errorsâ€"has been largely unappreciated in efforts to improve the quality and safety of health care. Without a dedicated focus on improving diagnosis, diagnostic errors will likely worsen as the delivery of health care and the diagnostic process continue to increase in complexity. Just as the diagnostic process is a collaborative activity, improving diagnosis will require collaboration and a widespread commitment to change among health care professionals, health care organizations, patients and their families, researchers, and policy makers. The recommendations of Improving Diagnosis in Health Care contribute to the growing momentum for change in this crucial area of health care quality and safety.
In the past, for the most part, people who moved into management positions in medical imaging were chosen because they were the best technologists. However, the skill set for technologists and supervisors/managers are vastly different. Even an MBA-educated person may not be ready to take on imaging management. As an example, when buying a very expe