Download Free Mechanochemical Regulation Of Epithelial Tissue Remodeling Book in PDF and EPUB Free Download. You can read online Mechanochemical Regulation Of Epithelial Tissue Remodeling and write the review.

Epithelial-mesenchymal transition (EMT) regulates the cellular processes of migration, growth, and proliferation - as well as the collective cellular process of tissue remodeling - in response to mechanical and chemical stimuli in the cellular microenvironment. Cells of the epithelium form cell-cell junctions with adjacent cells to function as a barrier between the body and its environment. By distributing localized stress throughout the tissue, this mechanical coupling between cells maintains tensional homeostasis in epithelial tissue structures and provides positional information for regulating cellular processes. Whereas in vitro and in vivo models fail to capture the complex interconnectedness of EMT-associated signaling networks, previous computational models have succinctly reproduced components of the EMT program. In this work, we have developed a computational framework to evaluate the mechanochemical signaling dynamics of EMT at the molecular, cellular, and tissue scale. First, we established a model of cell-matrix and cell-cell feedback for predicting mechanical force distributions within an epithelial monolayer. These findings suggest that tensional homeostasis is the result of cytoskeletal stress distribution across cell-cell junctions, which organizes otherwise migratory cells into a stable epithelial monolayer. However, differences in phenotype-specific cell characteristics led to discrepancies in the experimental and computational observations. To better understand the role of mechanical cell-cell feedback in regulating EMT-dependent cellular processes, we introduce an EMT gene regulatory network of key epithelial and mesenchymal markers, E-cadherin and N-cadherin, coupled to a mechanically-sensitive intracellular signaling cascade. Together these signaling networks integrate mechanical cell-cell feedback with EMT-associated gene regulation. Using this approach, we demonstrate that the phenotype-specific properties collectively account for discrepancies in the computational and experimental observations. Additionally, mechanical cell-cell feedback suppresses the EMT program, which is reflected in the gene expression of the heterogeneous cell population. Together, these findings advance our understanding of the complex interplay in cell-cell and cell-matrix feedback during EMT of both normal physiological processes as well as disease progression.
Cowin (New York Center for Biomedical Engineering) and Humphrey (biomedical engineering, Texas A&M U.) present seven papers that discuss current research and future directions. Topics concern tissues within the cardiovascular system (arteries, the heart, and biaxial testing of planar tissues such as heart valves). Themes include an emphasis on data on the underlying microstructure, especially collagen; the consideration of the fact that both arteries and the heart contain muscle and that there is, therefore, a need to quantify both the active and passive response; constitutive relations for active behavior; and the growth and remodeling of cardiovascular tissues. Of interest to cardiovascular and biomechanics soft tissue researchers, and bioengineers. Annotation copyrighted by Book News, Inc., Portland, OR.
This comprehensive work discusses novel biomolecular surfaces that have been engineered to either control or measure cell function at the atomic, molecular, and cellular levels. Each chapter presents real results, concepts, and expert perspectives of how cells interact with biomolecular surfaces, with particular emphasis on interactions within complex mechanical environments such as in the cardiovascular system. In addition, the book provides detailed coverage of inflammation and cellular immune response as a useful model for how engineering concepts and tools may be effectively applied to complex systems in biomedicine. -Accessible to biologists looking for new ways to model their results and engineers interested in biomedical applications -Useful to researchers in biomaterials, inflammation, and vascular biology -Excellent resource for graduate students as a textbook in cell & tissue engineering or cell mechanics courses
This is the only single authored text on biological polymers available for bioengineering and biomedical engineering students. The book describes the structure of polymers and how these molecules are put together to make the tissues of the body and also their role in surgical implants and in structural diseases. It provides essential reading for biomedical engineers, biologists, physicians, health care professionals and other biomedical researchers who are interested in understanding how physical forces affect the biology, physiology and pathophysiology of humans. The author is an expert on the effect of mechanical forces on extracellular matrix.
1 Kevin Moses It is now 25 years since the study of the development of the compound eye in Drosophila really began with a classic paper (Ready et al. 1976). In 1864, August Weismann published a monograph on the development of Diptera and included some beautiful drawings of the developing imaginal discs (Weismann 1864). One of these is the first description of the third instar eye disc in which Weismann drew a vertical line separating a posterior domain that included a regular pattern of clustered cells from an anterior domain without such a pattern. Weismann suggested that these clusters were the precursors of the adult ommatidia and that the line marks the anterior edge of the eye. In his first suggestion he was absolutely correct - in his second he was wrong. The vertical line shown was not the anterior edge of the eye, but the anterior edge of a moving wave of patterning and cell type specification that 112 years later (1976) Ready, Hansen and Benzer would name the "morphogenetic furrow". While it is too late to hear from August Weismann, it is a particular pleasure to be able to include a chapter in this Volume from the first author of that 1976 paper: Don Ready! These past 25 years have seen an astonishing explosion in the study of the fly eye (see Fig.
Physical Biology of the Cell is a textbook for a first course in physical biology or biophysics for undergraduate or graduate students. It maps the huge and complex landscape of cell and molecular biology from the distinct perspective of physical biology. As a key organizing principle, the proximity of topics is based on the physical concepts that
First published in 1997, Principles of Tissue Engineering is the widely recognized definitive resource in the field. The third edition provides a much needed update of the rapid progress that has been achieved in the field, combining the prerequisites for a general understanding of tissue growth and development, the tools and theoretical information needed to design tissues and organs, as well as a presentation by the world’s experts of what is currently known about each specific organ system. This edition includes greatly expanded focus on stem cells, including adult and embryonic stem cells and progenitor populations that may soon lead to new tissue engineering therapies for heart disease, diabetes, and a wide variety of other diseases that afflict humanity. This up-to-date coverage of stem cell biology and other emerging technologies is complemented by a series of new chapters on recent clinical experience in applying tissue engineering. The result is a comprehensive textbook that we believe will be useful to students and experts alike. New to this edition:*Includes new chapters on biomaterial-protein interactions, nanocomposite and three-dimensional scaffolds, skin substitutes, spinal cord, vision enhancement, and heart valves*Expanded coverage of adult and embryonic stem cells of the cardiovascular, hematopoietic, musculoskeletal, nervous, and other organ systems
Biological Mechanisms of Tooth Movement This new edition continues to be an authoritative reference to the scientific foundations underpinning clinical orthodontics The newly and thoroughly revised Third Edition of Biological Mechanisms of Tooth Movement delivers a comprehensive reference for orthodontic trainees and specialists. It is fully updated to include new chapters on personalized orthodontics as well as the inflammatory process occurring in the dental and paradental tissues. It is heavily illustrated throughout, making it easier for readers to understand and retain the information discussed within. The topics covered range from bone biology, the effects of mechanical loading on tissues and cells, genetics, tissue remodeling, and the effects of diet, drugs, and systemic diseases. The Third Edition of Biological Mechanisms of Tooth Movement features seven sections that cover subjects such as: The development of biological concepts in orthodontics, including the cellular and molecular biology behind orthodontic tooth movement Mechanics meets biology, including the effects of mechanical loading on hard and soft tissues and cells, and biological reactions to temporary anchorage devices Inflammation and orthodontics, including markers for tissue remodeling in the gingival crevicular fluid and saliva Personalized diagnosis and treatment based on genomic criteria, including the genetic influences on orthodontic tooth movement Rapid orthodontics, including methods to accelerate or decelerate orthodontic tooth movement Perfect for residents and PhD students of orthodontic and periodontal programs, Biological Mechanisms of Tooth Movement is also useful to academics, clinicians, bone biologists, and researchers with an interest in the mechanics and biology of tooth movement.