Download Free Mechanisms Of Plant Growth And Improved Productivity Modern Approaches Book in PDF and EPUB Free Download. You can read online Mechanisms Of Plant Growth And Improved Productivity Modern Approaches and write the review.

Discusses the mechanisms of plant productivity and the factors limiting net photosynthesis, describing techniques to isolate, characterize and manipulate specific plant genes in order to enhance productivity. The uptake of carbon and the practical aspects of plant nutrition are discussed.
Discusses the mechanisms of plant productivity and the factors limiting net photosynthesis, describing techniques to isolate, characterize and manipulate specific plant genes in order to enhance productivity. The uptake of carbon and the practical aspects of plant nutrition are discussed.
Molecular Aspects of Plant Beneficial Microbes in Agriculture explores their diverse interactions, including the pathogenic and symbiotic relationship which leads to either a decrease or increase in crop productivity. Focusing on these environmentally-friendly approaches, the book explores their potential in changing climatic conditions. It presents the exploration and regulation of beneficial microbes in offering sustainable and alternative solutions to the use of chemicals in agriculture. The beneficial microbes presented here are capable of contributing to nutrient balance, growth regulators, suppressing pathogens, orchestrating immune response and improving crop performance. The book also offers insights into the advancements in DNA technology and bioinformatic approaches which have provided in-depth knowledge about the molecular arsenal involved in mineral uptake, nitrogen fixation, growth promotion and biocontrol attributes.
Learn the secrets of soil chemistry and its role in agriculture and the environment. Examine the fundamental laws of soil chemistry, how they affect dissolution, cation and anion exchange, and other reactions. Explore how water can form water-bridges and hydrogen bonding, the most common forces in adsorption, chelation, and more. Discover how electrical charges develop in soils creating electrochemical potentials forcing ions to move into the plant body through barriers such as root membranes, nourishing crops and plants. You can do all this and more with Principles of Soil Chemistry, Fourth Edition. Since the first edition published in 1982, this resource has made a name for itself as a textbook for upper level undergraduates and as a handy reference for professionals and scientists. This fourth edition reexamines the entire reach of soil chemistry while maintaining the clear, concise style that made previous editions so user-friendly. By completely revising, updating, and incorporating a decade’s worth of new information, author Kim Tan has made this edition an entirely new and better book. See what's new in the Fourth Edition Reexamines atoms as the smallest particle that will enter into chemical reactions by probing new advances testifying the presence of subatomic particles and concepts such as string theory Underscores oxygen as the key element in soil air and atmosphere for life on earth Reevaluates the idea of transformation of orthoclase into albite by simple cation exchange reactions as misleading and bending scientific concepts of ion exchange over the limit of truth Examines the role of fertilizers, sulfur, pyrite, acid rain, and nitrogen fixation in soil acidity, underscoring the controversial effect of nitrification on increasing soil acidity over time Addresses the old and new approaches to humic acids by comparing the traditional operational concept against the currently proposed supramolecular and pseudomicellar concept Proposes soil organics, such as nucleic acids of DNA and others, to also adsorb cation ions held as diffusive ion clouds around the polymers Tan explains, in easy and simple language, the chemical make-up of the four soil constituents, their chemical reactions and interactions in soils as governed by basic chemical laws, and their importance in agriculture, industry, and the environment. He differentiates soil chemistry from geochemistry and physical chemistry. Containing more than 200 equations, 123 figures, and 38 tables, this popular text and resource supplies a comprehensive treatment of soil chemistry that builds a foundation for work in environmental pollution, organic and inorganic soil contamination, and potential ecological health and environmental health risks.
Merging coverage of two increasingly popular and quickly growing food trends, Organic Production and Use of Alternative Crops provides an overview of the basic principles of organic agriculture and highlights its multifunctionality with special emphasis on the conservation of rare crops and their uses. Considering more than 30 disregarded and negle
The field of humic matter research has undergone drastic changes in concepts and principles since the first edition of Humic Matter in Soil and the Environment: Principles and Controversies was published more than a decade ago. Still the only book of its kind specifically addressing humic acid principles and controversies, the Second Edition presents the newest advances in humic acid science. Eleven new and rewritten chapters replace the original nine, with updated material representing modern humic acid chemistry. This includes the delineation of organic matter, humus, and humic matter. The book begins by considering organic matter as a whole, describing terrestrial and aquatic organic matter. It examines humus as a mixture of humified and nonhumified organic matter, focusing also on the importance of the nonhumified fraction—plant biopolymers in their original or slightly decomposed forms—as raw materials for formation of the humic fraction. The book then presents concepts of humic matter, referred to as humic acid, covering a range of ideas from traditional views of biopolymers to the latest concepts based on micellar, supramolecular, and nanotube chemistry. The author presents the major pathways of humification and discusses humification theories. He also examines the extraction, isolation, and fractionation of humic matter. The book reviews the chemical composition and model structures of humic acids, the chemical and spectroscopic characterization of humic substances, and the electrochemical properties of humic matter. It also addresses the agronomic, environmental, and industrial (including pharmaceutical) importance of humic matter. This revised and updated edition continues the tradition of providing comprehensive coverage of the genesis, extraction, properties, and impacts of humic matter.
Since the publication of the previous editions of the Handbook of Photosynthesis, many new ideas on photosynthesis have emerged in the past decade that have drawn the attention of experts and researchers on the subject as well as interest from individuals in other disciplines. Updated to include 37 original chapters and making extensive revisions to the chapters that have been retained, 90% of the material in this edition is entirely new. With contributions from over 100 authors from around the globe, this book covers the most recent important research findings. It details all photosynthetic factors and processes under normal and stressful conditions, explores the relationship between photosynthesis and other plant physiological processes, and relates photosynthesis to plant production and crop yields. The third edition also presents an extensive new section on the molecular aspects of photosynthesis, focusing on photosystems, photosynthetic enzymes, and genes. New chapters on photosynthesis in lower and monocellular plants as well as in higher plants are included in this section. The book also addresses growing concerns about excessive levels and high accumulation rates of carbon dioxide due to industrialization. It considers plant species with the most efficient photosynthetic pathways that can help improve the balance of oxygen and carbon dioxide in the atmosphere. Completely overhauled from its bestselling predecessors, the Handbook of Photosynthesis, Third Edition provides a nearly entirely new source on the subject that is both comprehensive and timely. It continues to fill the need for an authoritative and exhaustive resource by assembling a global team of experts to provide thorough coverage of the subject while focusing on finding solutions to relevant contemporary issues related to the field.
This book presents comprehensive coverage of differentiated plant responses to changing environments. It focuses on how multiple and combined stress factors influence plant survival. It examines the latest data on the capacity of roots to alter growth patterns due to disturbances in physical and/or chemical soil constraints, water supply, and other traumas. It contains over 85% new and updated material with more than 1500 new citations, tables, drawings, and photographs.
The need to understand the biological processes that are important for essential aquatic and terrestrial ecosystem function has prompted much research into the field of ecological enzymology. This book presents the two broad areas of application in a compilation of reviews by 21 international experts in their respective fields. The first explores enzymatic activities to assess the processes or mechanisms that operate in a given system, such as the rhizosphere, plant leaves and shoots, soil surfaces, and biofilms. The second considers enzymes or microbial cells as sensors to detect microbial activity and stresses due to pollution, management, or climatic change in both aquatic and terrestrial ecosystems.
Molecular Host Plant Resistance to Pests examines environmentally safe and integrated techniques for effective pest management. Offering more than 1500 references for further exploration of the topic, this reference details the bioactivity, biosynthetic pathways, mechanisms of action, and genetic regulation for improved methods of crop protection a