Download Free Mechanisms Chemistry And Kinetics Of Anaerobic Biodegradation Of Cdce And Vc Book in PDF and EPUB Free Download. You can read online Mechanisms Chemistry And Kinetics Of Anaerobic Biodegradation Of Cdce And Vc and write the review.

Biological reductive dehalogenation of the chlorinated ethenes, tetrachloroethene (PCE) and trichloroethene (TCE) to cis-1,2-dichloroethene (cDCE), vinyl chloride (VC) and then ethene is of great interest both for natural attenuation and engineered remediation of these hazardous 2 contaminants in groundwater. This study was directed towards a better understanding of the factors affecting the rate and extent of conversions of cDCE and VC to ethene, which are generally considered the rate limiting steps in the overall process. The objectives of this study are to (1) determine the biochemical pathways for reductive dehalogenation of cDCE and VC, including identification of the enzymes involved, (2) determine the chemical requirements, especially the type and quantity of electron donors needed by the microorganisms for reductive dehalogenation, and (3) evaluate the kinetics of the process with respect to the concentration of both the electron donors and the electron acceptors (c DCE and VC).
Anaerobic biological processes can result in PCE and TCE destruction through conversion to cis-dichloroethene (cDCE) then to vinyl chloride (VC), and finally to ethene. Here, the chlorinated aliphatic hydrocarbons (CAHs) serve as electron acceptors in energy metabolism, requiring electron donors such as hydrogen from an external source. The purpose of this study was to learn more about the biochemistry of cDCE and VC conversion to ethene, to better understand the requirements for electron donors, and to determine factors affecting the rates of CAH degradation and organism growth. The biochemistry of reductive dehalogenation of VC was studied with an anaerobic mixed culture enriched on VC. In other studies on electron donor needs for dehalogenation of cDCE and VC, competition for hydrogen was found to occur between the dehalogenators and other microorganisms such as methanogens and homoacetogens in a benzoate-acclimated dehalogenating methanogenic mixed culture. Factors affecting the relative rates of destruction of the solvents and their intermediate products were evaluated. Studies using a mixed PCE-dehalogenating culture as well as the VC enrichment for biochemical studies suggested that the same species was involved in both cDCE and VC dechlorination, and that cDCE and VC competitively inhibited each other's dechlorination rate.
This three-year project is to study the anaerobic biological conversion of cis-1,2- dichloroethene (cDCE) and vinyl Chloride (VC) to ethene. The study is being conducted in three separate phases, the first to better understand the mechanisms involved in cDCE and VC biodegradation, the second to evaluate the chemistry of the processes involved, and the third, to study factors affecting reaction kinetics. Major funding is being provided by the US Department of Energy, but the DuPont Chemical Company has also agreed to directly cost-share on the project at a rate of $75,000 per year for the three year period. Tetrachloroethylene (PCE) and trichloroethylene (TCE) are solvents that are among the most widely occurring organic groundwater contaminants. The biological anaerobic reduction-of chlorinated aliphatic hydrocarbons (CAHs) such as PCE and TCE to cDCE and VC in groundwater was reported in the early 1980s. Further reduction of PCE and its intermediates to ethene was reported in 1989. Several pure cultures of anaerobic bacteria have been found to reductively dehalogenate PCE to cDCE Rates of reduction of PCE and TCE to cDCE are high and the need for electron donor addition for the reactions is small. However, the subsequent reduction of cDCE to VC, and then of VC to the harmless end product, ethene, is much slower and only recently has a pure culture been reported that is capable of reducing cDCE to VC or VC to ethene. There are numerous. reports of such conversions in mixed cultures. The reduction of cDCE and VC to ethene is where basic research is most needed and is the subject of this study.
The objectives of this study are to: (1) determine the biochemical pathways for reductive dehalogenation of cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC), including identification of the enzymes involved, (2) determine the chemical requirements, especially the type and quantity of electron donors needed by the microorganisms for reductive dehalogenation, and (3) evaluate the kinetics of the process with respect to the concentration of both the electron donors and the electron acceptors (cDCE and VC). Progress has been made under each of the three primary objectives. One manuscript related to the first objective has been published. Manuscripts related to the other two objectives have been submitted for publication. Findings related to the three objectives are summarized.
In situ bioremediationâ€"the use of microorganisms for on-site removal of contaminantsâ€"is potentially cheaper, faster, and safer than conventional cleanup methods. But in situ bioremediation is also clouded in uncertainty, controversy, and mistrust. This volume from the National Research Council provides direction for decisionmakers and offers detailed and readable explanations of: the processes involved in in situ bioremediation, circumstances in which it is best used, and methods of measurement, field testing, and modeling to evaluate the results of bioremediation projects. Bioremediation experts representing academic research, field practice, regulation, and industry provide accessible information and case examples; they explore how in situ bioremediation works, how it has developed since its first commercial use in 1972, and what research and education efforts are recommended for the future. The volume includes a series of perspective papers. The book will be immediately useful to policymakers, regulators, bioremediation practitioners and purchasers, environmental groups, concerned citizens, faculty, and students.
In the past decade, officials responsible for clean-up of contaminated groundwater have increasingly turned to natural attenuation-essentially allowing naturally occurring processes to reduce the toxic potential of contaminants-versus engineered solutions. This saves both money and headaches. To the people in surrounding communities, though, it can appear that clean-up officials are simply walking away from contaminated sites. When is natural attenuation the appropriate approach to a clean-up? This book presents the consensus of a diverse committee, informed by the views of researchers, regulators, and community activists. The committee reviews the likely effectiveness of natural attenuation with different classes of contaminants-and describes how to evaluate the "footprints" of natural attenuation at a site to determine whether natural processes will provide adequate clean-up. Included are recommendations for regulatory change. The committee emphasizes the importance of the public's belief and attitudes toward remediation and provides guidance on involving community stakeholders throughout the clean-up process. The book explores how contamination occurs, explaining concepts and terms, and includes case studies from the Hanford nuclear site, military bases, as well as other sites. It provides historical background and important data on clean-up processes and goes on to offer critical reviews of 14 published protocols for evaluating natural attenuation.
This book summarizes the current state of knowledge concerning bacteria that use halogenated organic compounds as respiratory electron acceptors. The discovery of organohalide-respiring bacteria has expanded the range of electron acceptors used for energy conservation, and serves as a prime example of how scientific discoveries are enabling innovative engineering solutions that have transformed remediation practice. Individual chapters provide in-depth background information on the discovery, isolation, phylogeny, biochemistry, genomic features, and ecology of individual organohalide-respiring genera, including Dehalococcoides, Dehalogenimonas, Dehalobacter, Desulfitobacterium and Sulfurospirillum, as well as organohalide-respiring members of the Deltaproteobacteria. The book introduces readers to the fascinating biology of organohalide-respiring bacteria, offering a valuable resource for students, engineers and practitioners alike.
Biological Treatment of Industrial Wastewater presents a comprehensive overview of the latest advances and trends in the use of bioreactors for treating industrial wastewater.
Written by one of the world's foremost authorities on the subject, this is the most comprehensive and in-depth treatment available to environmental engineers and scientists for the remediation of groundwater, one of the earth's most precious resources. Groundwater is one of the Earth's most precious resources. We use it for drinking, bathing, and many other purposes. Without clean water, humans would cease to exist. Unfortunately, because of ignorance or lack of caring, groundwater is often contaminated through industrialization, construction or any number of other ways. It is the job of the environmental engineer to remediate the contaminated groundwater and make what has been tainted safe again.Selecting the proper remediation strategy and process is the key to moving forward, and, once this process has been selected, it must be executed properly, taking into consideration the costs, the type of contaminants that are involved, time frames, and many other factors. This volume provides a broad overview of the current and most widely applied remedial strategies. Instead of discussing these strategies in a generic way, the volume is organized by focusing on major contaminants that are of prime focus to industry and municipal water suppliers. The specific technologies that are applicable to the chemical contaminants discussed in different chapters are presented, but then cross-referenced to other chemical classes or contaminants that are also candidates for the technologies. The reader will also find extensive cost guidance in this volume to assist in developing preliminary cost estimates for capital equipment and operations & maintenance costs, which should be useful in screening strategies. The eight chapters cover all of the major various types of contaminants and their industrial applications, providing a valuable context to each scenario of contamination. This is the most thorough and up-to-date volume available on this important subject, and it is a must-have for any environmental engineer or scientist working in groundwater remediation.
​This volume provides a review of the past 10 to 15 years of intensive research, development and demonstrations that have been on the forefront of developing bioaugmentation into a viable remedial technology. This volume provides both a primer on the basic microbial processes involved in bioaugmentation, as well as a thorough summary of the methodology for implementing the technology. This reference volume will serve as a valuable resource for environmental remediation professionals who seek to understand, evaluate, and implement bioaugmentation.