Download Free Mechanics Of Porous Media Book in PDF and EPUB Free Download. You can read online Mechanics Of Porous Media and write the review.

Over the last decade and particularly in recent years, the macroscopic porous media theory has made decisive progress concerning the fundamentals of the theory and the development of mathematical models in various fields of engineering and biomechanics. This progress has attracted some attention, and therefore conferences devoted almost exclusively to the macrosopic porous media theory have been organized in order to collect all findings, to present new results, and to discuss new trends. Many important contributions have also been published in national and international journals, which have brought the porous media theory, in some parts, to a close. Therefore, the time seems to be ripe to review the state of the art and to show new trends in the continuum mechanical treatment of saturated and unsaturated capillary and non-capillary porous solids. This book addresses postgraduate students and scientists working in engineering, physics, and mathematics. It provides an outline of modern theory of porous media and shows some trends in theory and in applications.
This is a consistent treatment of the material-independent fundamental equations of the theory of porous media, formulating constitutive equations for frictional materials in the elastic and plastic range, while tracing the historical development of the theory. Thus, for the first time, a unique treatment of fluid-saturated porous solids is presented, including an explanation of the corresponding theory by way of its historical progression, and a thorough description of its current state.
Mechanics and Physics of Porous Solids addresses the mechanics and physics of deformable porous materials whose porous space is filled by one or several fluid mixtures interacting with the solid matrix. Coussy uses the language of thermodynamics to frame the discussion of this topic and bridge the gap between physicists and engineers, and organises the material in such a way that individual phases are explored, followed by coupled problems of increasing complexity. This structure allows the reader to build a solid understanding of the physical processes occurring in the fluids and then porous solids. Mechanics and Physics of Porous Solids offers a critical reference on the physics of multiphase porous materials - key reading for engineers and researchers in structural and material engineering, concrete, wood and materials science, rock and soil mechanics, mining and oil prospecting, biomechanics.
This book discusses various aspects of percolation mechanics. It starts with the driving forces and driving modes and then examines in detail the steady state percolation of single-phase incompressible fluids, percolation law of natural gas and percolation of non-Newtonian fluids. Progressing from simple to complex concepts, it also analyzes Darcy’s law, providing a basis for the study of reservoir engineering, oil recovery engineering and reservoir numerical simulation. It serves as a textbook for undergraduate students majoring in petroleum engineering, petroleum geology and groundwater engineering, and offers a valuable reference guide for graduate students, researchers and technical engineers engaged in oil and gas exploration and development.
The present volume offers a state-of-the-art report on the various recent sci entific developments in the Theory of Porous Media (TPM) comprehending the basic theoretical concepts in continuum mechanics on porous and mul tiphasic materials as well as the wide range of experimental and numerical applications. Following this, the volume does not only address the sophisti cated reader but also the interested beginner in the area of Porous Media by presenting a collection of articles. These articles written by experts in the field concern the fundamental approaches to multiphasic and porous materials as well as various applications to engineering problems. In many branches of engineering just as in applied natural sciences like bio- and chemomechanics, one often has to deal with continuum mechanical problems which cannot be uniquely classified within the well-known disci plines of either "solid mechanics" or "fluid mechanics". These problems, characterized by the fact that they require a unified treatment of volumetri cally coupled solid-fluid aggregates; basically fall into the categories of either mixtures or porous media. Following this, there is a broad variety of problems ranging in this category as for example the investigation of reacting fluid mix tures or solid-fluid suspensions as well as the investigation of the coupled solid deformation and pore-fluid flow behaviour of liquid- and gas-saturated porous solid skeleton materials like geomaterials (soil, rock, concrete, etc. ), polymeric and metallic foams or biomaterials (hard and soft tissues, etc).
This book introduces the reader into the field of the physics of processes occurring in porous media. It targets Master and PhD students who need to gain fundamental understanding the impact of confinement on transport and phase change processes. The book gives brief overviews of topics like thermodynamics, capillarity and fluid mechanics in order to launch the reader smoothly into the realm of porous media. In-depth discussions are given of phase change phenomena in porous media, single phase flow, unsaturated flow and multiphase flow. In order to make the topics concrete the book contains numerous example calculations. Further, as much experimental data as possible is plugged in to give the reader the ability to quantify phenomena.
This book examines the relationship between transport properties and pore structure of porous material. Models of pore structure are presented with a discussion of how such models can be used to predict the transport properties of porous media. Portions of the book are devoted to interpretations of experimental results in this area and directions for future research. Practical applications are given where applicable, and are expected to be useful for a large number of different fields, including reservoir engineering, geology, hydrogeology, soil science, chemical process engineering, biomedical engineering, fuel technology, hydrometallurgy, nuclear reactor technology, and materials science. - Presents mechanisms of immiscible and miscible displacement (hydrodynamic dispersion) process in porous media - Examines relationships between pore structure and fluid transport - Considers approaches to enhanced oil recovery - Explores network modeling and perolation theory
This new edition includes nearly 1000 new references.
Although the empirical treatment of fluid flow and heat transfer in porous media is over a century old, only in the last three decades has the transport in these heterogeneous systems been addressed in detail. So far, single-phase flows in porous media have been treated or at least formulated satisfactorily, while the subject of two-phase flow and the related heat-transfer in porous media is still in its infancy. This book identifies the principles of transport in porous media and compares the avalaible predictions based on theoretical treatments of various transport mechanisms with the existing experimental results. The theoretical treatment is based on the volume-averaging of the momentum and energy equations with the closure conditions necessary for obtaining solutions. While emphasizing a basic understanding of heat transfer in porous media, this book does not ignore the need for predictive tools; whenever a rigorous theoretical treatment of a phenomena is not avaliable, semi-empirical and empirical treatments are given.
In a significantly revised English edition the text provides a solid course on mechanics of porous & fractured media (mainly of geomaterials). Part I focuses on the continuum theory of the dynamic fracture and deformation of bodies with complex rheology, including the dilatancy theory. Applications are connected with dynamics large scale processes, blast waves and with structure of the Earth's crust. Part II focuses on the effects of fluid saturation of pores and transfer phenomena. Applications are connected with seismic waves, oil and gascondensate recovery, explosion works, physico-chemical processes.