Download Free Mechanics Of Metamaterials With Negative Parameters Book in PDF and EPUB Free Download. You can read online Mechanics Of Metamaterials With Negative Parameters and write the review.

This book discusses bulk solids that derive their mechanical properties not from those of their base materials, but from their designed microstructures. Focusing on the negative mechanical properties, it addresses topics that reveal the counter-intuitive nature of solids, specifically the negativity of properties that are commonly positive, such as negative bulk modulus, negative compressibility, negative hygroexpansion, negative thermal expansion, negative stiffness phase, and negative Poisson’s ratio. These topics are significant not only due to the curiosity they have sparked, but also because of the possibility of designing materials and structures that can behave in ways that are not normally expected in conventional solids, and as such, of materials that can outperform solids and structures made from conventional materials. The book includes illustrations to facilitate learning, and, where appropriate, reference tables. The presentation is didactic, starting with simple cases, followed by increasingly complex ones. It provides a solid foundation for graduate students, and a valuable resource for practicing materials engineers seeking to develop novel materials through the judicious design of microstructures and their corresponding mechanisms.
The first general textbook to offer a complete overview of metamaterial theory and its microwave applications Metamaterials with Negative Parameters represents the only unified treatment of metamaterials available in one convenient book. Devoted mainly to metamaterials that can be characterized by a negative effective permittivity and/or permeability, the book includes a wide overview of the most important topics, scientific fundamentals, and technical applications of metamaterials. Chapter coverage includes: the electrodynamics of left-handed media, synthesis of bulk metamaterials, synthesis of metamaterials in planar technology, microwave applications of metamaterial concepts, and advanced and related topics, including SRR- and CSRR-based admittance surfaces, magneto- and electro-inductive waves, and sub-diffraction imaging devices. A list of problems and references is included at the end of each chapter, and a bibliography offers a complete, up-to-daterepresentation of the current state of the art in metamaterials. Geared toward students and professionals alike, Metamaterials with Negative Parameters is an ideal textbook for postgraduate courses and also serves as a valuable introductory reference for scientists and RF/microwave engineers.
Leading experts explore the exotic properties and exciting applications of electromagnetic metamaterials Metamaterials: Physics and Engineering Explorations gives readers a clearly written, richly illustrated introduction to the most recent research developments in the area of electromagnetic metamaterials. It explores the fundamental physics, the designs, and the engineering aspects, and points to a myriad of exciting potential applications. The editors, acknowledged leaders in the field of metamaterials, have invited a group of leading researchers to present both their own findings and the full array of state-of-the-art applications for antennas, waveguides, devices, and components. Following a brief overview of the history of artificial materials, the publication divides its coverage into two major classes of metamaterials. The first half of the publication examines effective media with single (SNG) and double negative (DNG) properties; the second half examines electromagnetic band gap (EBG) structures. The book further divides each of these classes into their three-dimensional (3D volumetric) and two-dimensional (2D planar or surface) realizations. Examples of each type of metamaterial are presented, and their known and anticipated properties are reviewed. Collectively, Metamaterials: Physics and Engineering Explorations presents a review of recent research advances associated with a highly diverse set of electromagnetic metamaterials. Its multifaceted approach offers readers a combination of theoretical, numerical, and experimental perspectives for a better understanding of their behaviors and their potentialapplications in components, devices, and systems. Extensive reference lists provide opportunities to explore individual topics and classes of metamaterials in greater depth. With full-color illustrations throughout to clarify concepts and help visualize actual results, this book provides a dynamic, user-friendly resource for students, engineers, physicists, and other researchers in the areas of electromagnetic materials, microwaves, millimeter waves, and optics. It equips newcomers with a basic understanding of metamaterials and their potential applications. Advanced researchers will benefit from thought-provoking perspectives that will deepen their knowledge and lead them to new areas of investigation.
This book lays down the foundation on the mechanics and design of auxetic solids and structures, solids that possess negative Poisson’s ratio. It will benefit two groups of readers: (a) industry practitioners, such as product and structural designers, who need to control mechanical stress distributions using auxetic materials, and (b) academic researchers and students who intend to produce unique mechanical and other physical properties of structures using auxetic materials.
Metamaterials have been in research limelight for the last few years owing to the exotic electromagnetic features these exhibit. With certain combinational forms of the design, these can be of prudent applications in developing antennas, filters, absorbers, sensors, energy harvesters, and many others. As such, the role of engineered mediums remains greatly important as the frequency region of operation determines the structure (of the medium(s)) to be developed – the fact that is exploited in the on-demand kind of tailoring the electromagnetic response of metamaterials. The relevant R&D investigators show keen interest in the fabrication of varieties of novel miniaturized devices that can be of great potentials in many micro- as well as nanotechnology-oriented applications. With this view point in mind, the Book provides the glimpse of phenomenal growth of research in this direction through covering the topics pivoted to fundamental descriptions, and theoretical and experimental results reported by pioneering scientists. It is expected that the book will be of benefit to novice researchers (such as graduate students) and expert scientists in universities and research laboratories. Some of the contents in the book are centered on industrial applications of metamaterials, thereby making the volume useful to the R&D scientists in certain industries. In summary, the book
Ever since the first experimental demonstration was reported in 2000, the interest in metamaterials and left-handed media that exhibit a negative refractive index has increased exponentially. Surveying this explosive growth, Physics and Applications of Negative Refractive Index Materials covers the fundamental physical principles and emerging engin
Learn about the revolutionary new technology of negative-refractionmetamaterials Negative-Refraction Metamaterials: Fundamental Principles andApplications introduces artificial materials that support theunusual electromagnetic property of negative refraction. Readerswill discover several classes of negative-refraction materialsalong with their exciting, groundbreaking applications, such aslenses and antennas, imaging with super-resolution, microwavedevices, dispersion-compensating interconnects, radar, anddefense. The book begins with a chapter describing the fundamentals ofisotropic metamaterials in which a negative index of refraction isdefined. In the following chapters, the text builds on thefundamentals by describing a range of useful microwave devices andantennas. Next, a broad spectrum of exciting new research andemerging applications is examined, including: * Theory and experiments behind a super-resolving,negative-refractive-index transmission-line lens * 3-D transmission-line metamaterials with a negative refractiveindex * Numerical simulation studies of negative refraction of Gaussianbeams and associated focusing phenomena * Unique advantages and theory of shaped lenses made ofnegative-refractive-index metamaterials * A new type of transmission-line metamaterial that is anisotropicand supports the formation of sharp steerable beams (resonancecones) * Implementations of negative-refraction metamaterials at opticalfrequencies * Unusual propagation phenomena in metallic waveguides partiallyfilled with negative-refractive-index metamaterials * Metamaterials in which the refractive index and the underlyinggroup velocity are both negative This work brings together the best minds in this cutting-edgefield. It is fascinating reading for scientists, engineers, andgraduate-level students in physics, chemistry, materials science,photonics, and electrical engineering.
The book presents interesting examples of recent developments in this area. Among the studied materials are bulk metallic glasses, metamaterials, special composites, piezoelectric smart structures, nonwovens, etc. The last decades have seen a large extension of types of materials employed in various applications. In many cases these materials demonstrate mechanical properties and performance that vary significantly from those of their traditional counterparts. Such uniqueness is sought – or even specially manufactured – to meet increased requirements on modern components and structures related to their specific use. As a result, mechanical behaviors of these materials under different loading and environmental conditions are outside the boundaries of traditional mechanics of materials, presupposing development of new characterization techniques, theoretical descriptions and numerical tools. The book presents interesting examples of recent developments in this area. Among the studied materials are bulk metallic glasses, metamaterials, special composites, piezoelectric smart structures, nonwovens, etc.