Download Free Mechanical Properties Of Uranium Plate Book in PDF and EPUB Free Download. You can read online Mechanical Properties Of Uranium Plate and write the review.

Hot-rolled uranium plate exhibited a pronounced directionality in mechanical properties which was reduced but not eliminated by beta transformation. Results of tensile, bend, impact and hardness tests made at room temperature are summarized for both hotrolled and beta-transfomned uranium plate. Significant differences in mechanical properties existed between ten lots of uranium plate processed under similar conditions. Composition and processing data were inadequate to assign causes for the variations. (auth).
The physical and mechanical properties of GCRE-type fuel elements were determined from room temperature to 1650 deg F. The fuel elements were prepared by cladding Type 318 stainless steel sheet to a core containing 15 to 35 wt.% UO/ sub 2/ in either prealloyed Type 318 stainless steel or elemental iron-18 wt.% chromium-14 wt. % nickel-2.5 wt. % molybdenum. The tensile strength in the direction perpendicular to the rolling plane decreased from 24,600 psi at room temperature to 9,200 psi at 1650 deg F for the reference fuel plate, whose core contained 25 wt.% UO2 in the elemental alloy. The tensile strength in the longitudinal direction for this fuel element ranged from 54,800 psi at room temperature to 14,200 psi at 1650 deg F, with elongation in 2 in. ranging from 8 to 13 per cent. The extrapolated stress for 1000hr rupture life at 1650 deg F was 1800 psi, and a 1.4T bend was withstood without cracking. The mean linear thermal coefficient of expansion was 11.0 x 10−6 per deg F for the range 68 to 1700 deg F. (auth).
Uranium Processing and Properties describes developments in uranium science, engineering and processing and covers a broad spectrum of topics and applications in which these technologies are harnessed. This book offers the most up-to-date knowledge on emerging nuclear technologies and applications while also covering new and established practices for working with uranium supplies. The book also aims to provide insights into current research and processing technology developments in order to stimulate and motivate innovation among readers. Topics covered include casting technology, plate and sheet rolling, machining of uranium and uranium alloys, forming and fabrication techniques, corrosion kinetics, nondestructive evaluation and thermal modeling.