Download Free Mechanical Behavior Of Advanced Materials Modeling And Simulation Book in PDF and EPUB Free Download. You can read online Mechanical Behavior Of Advanced Materials Modeling And Simulation and write the review.

With the recent developments in the field of advanced materials, there exists a need for a systematic summary and detailed introduction of the modeling and simulation methods for these materials. This book provides a comprehensive description of the mechanical behavior of advanced materials using modeling and simulation. It includes materials such as high-entropy alloys, high-entropy amorphous alloys, nickel-based superalloys, light alloys, electrode materials, and nanostructured reinforced composites. Reviews the performance and application of a variety of advanced materials and provides the detailed theoretical modeling and simulation of mechanical properties Covers the topics of deformation, fracture, diffusion, and fatigue Features worked examples and exercises that help readers test their understanding This book is aimed at researchers and advanced students in solid mechanics, material science, engineering, material chemistry, and those studying the mechanics of materials.
"With the recent developments in the field there exists a need for a systematic summary and detailed introduction of the modeling and simulation methods for these materials. This book provides a comprehensive description of mechanical behavior of advanced materials using modeling and simulation. It includes materials such as high entropy alloys, high entropy amorphous alloys, nickel-based superalloys, light alloys, electrode materials, and nanostructured reinforced composites. Reviews the performance and application of a variety of advanced materials and provides the detailed theoretical modeling and simulation of mechanical properties. Covers the topics of deformation, fracture, diffusion, and fatigue. Features worked examples and exercises that help readers test their understanding. This book is aimed at researchers and advanced students in solid mechanics, material science, engineering, material chemistry, and those studying mechanics of materials"--
This book provides a comprehensive description of mechanical behavior of advanced materials using modeling and simulation. It includes such materials as high entropy alloys and amorphous alloys, nickel-based superalloys, graphene, lithium, light alloys, and nanostructured reinforced composites.
This reference describes advanced computer modeling and simulation procedures to predict material properties and component design including mechanical properties, microstructural evolution, and materials behavior and performance. The book illustrates the most effective modeling and simulation technologies relating to surface-engineered compounds, fastener design, quenching and tempering during heat treatment, and residual stresses and distortion during forging, casting, and heat treatment. With contributions from internationally recognized experts in the field, it enables researchers to enhance engineering processes and reduce production costs in materials and component development.
This book reports on cutting-edge findings concerning characterization of material behavior, material modeling and simulation, and applications in the field of manufacturing. Based on the second International Conference on Advanced Materials Mechanics & Manufacturing, A3M2018, organized by the Laboratory of Mechanics, Modeling and Manufacturing (LA2MP) of the National School of Engineers of Sfax, Tunisia, the book covers a variety of topics, such as experimental analysis of material plasticity and fatigue, numerical simulation of material behavior, and optimization of manufacturing processes, such as cutting and injection, among others. It offers a timely snapshot on current research and applications, offering a bridge to facilitate communication and collaboration between academic and industrial researchers.
This book reports on innovative materials research with a special emphasis on methods, modeling, and simulation tools for analyzing material behavior, emerging materials, and composites, and their applications in the field of manufacturing. Chapters are based on contributions to the third International Conference on Advanced Materials Mechanics and Manufacturing, A3M2021, organized by the Laboratory of Mechanics, Modeling, and Manufacturing (LA2MP) of the National School of Engineers of Sfax, Tunisia and held online on March 25-27, 2021. They cover a variety of topics, spanning from experimental analysis of material plasticity and fatigue, numerical simulation of material behavior, and optimization of manufacturing processes, such as cutting and injection, among others. Offering a good balance of fundamental research and industrially relevant findings, they provide researchers and professionals with a timely snapshot of and extensive information on current developments in the field and a source of inspiration for future research and collaboration.
This volume highlights the latest developments and trends in advanced materials and their properties, the modeling and simulation of non-classical materials and structures, and new technologies for joining materials. It presents the developments of advanced materials and respective tools to characterize and predict the material properties and behavior.
This book presents selected peer-reviewed contributions from the 2019 International Conference on “Physics and Mechanics of New Materials and Their Applications”, PHENMA 2019 (Hanoi, Vietnam, 7–10 November, 2019), divided into four scientific themes: processing techniques, physics, mechanics, and applications of advanced materials. The book describes a broad spectrum of promising nanostructures, crystals, materials and composites with special properties. It presents nanotechnology approaches, modern environmentally friendly techniques and physical-chemical and mechanical studies of the structural-sensitive and physical–mechanical properties of materials. The obtained results are based on new achievements in material sciences and computational approaches, methods and algorithms (in particular, finite-element and finite-difference modeling) applied to the solution of different technological, mechanical and physical problems. The obtained results have a significant interest for theory, modeling and test of advanced materials. Other results are devoted to promising devices demonstrating high accuracy, longevity and new opportunities to work effectively under critical temperatures and high pressures, in aggressive media, etc. These devices demonstrate improved comparative characteristics, caused by developed materials and composites, allowing investigation of physio-mechanical processes and phenomena based on scientific and technological progress.
Deformation Based Processing of Materials: Behavior, Performance, Modeling and Control focuses on deformation based process behaviors and process performance in terms of the quality of the needed shape, geometries, and the requested properties of the deformed products. In addition, modelling and simulation is covered to create an in-depth and epistemological understanding of the process. Other topics discussed include ways to efficiently reduce or avoid defects and effectively improve the quality of deformed parts. The book is ideal as a technical document, but also serves as scientific literature for engineers, scientists, academics, research students and management professionals involved in deformation based materials processing. Covers process behaviors, such as non-uniform deformation, unstable deformation, material flow phenomena, and process performance Includes modelling and simulation of the entire deformation process Looks at control of the preferred deformation, undesirable material flow, avoidance and reduction of defects, and improving the dimensional accuracy, surface quality and microstructure construction of the produced products
This book summarizes the actual state of the art and future trends of surface effects in solid mechanics. Surface effects are more and more important in the precise description of the behavior of advanced materials. One of the reasons for this is the well-known from the experiments fact that the mechanical properties are significantly influenced if the structural size is very small like, for example, nanostructures. In this book, various authors study the influence of surface effects in the elasticity, plasticity, viscoelasticity. In addition, the authors discuss all important different approaches to model such effects. These are based on various theoretical frameworks such as continuum theories or molecular modeling. The book also presents applications of the modeling approaches.