Download Free Measuring Cellular Mechanics With Quantitative Phase Microscopy Book in PDF and EPUB Free Download. You can read online Measuring Cellular Mechanics With Quantitative Phase Microscopy and write the review.

'Proceedings of SPIE' presents the original research papers presented at SPIE conferences and other high-quality conferences in the broad-ranging fields of optics and photonics. These books provide prompt access to the latest innovations in research and technology in their respective fields.
Cutting-edge quantitative phase imaging techniques and their applications Filled with unique, full-color images taken by advanced quantitative phase imaging (QPI), Quantitative Phase Imaging of Cells and Tissues thoroughly explores this innovative technology and its biomedical applications. An introductory background on optical imaging and traditional optical microscopy is included to illustrate concept development. The book explains how various visualization modalities can be obtained by numerical calculations. This authoritative resource reveals how to take full advantage of the unprecedented capabilities of QPI, such as rendering scattering properties of minute subcellular structures and nanoscale fluctuations in live cells. Coverage includes: Groundwork Spatiotemporal field correlations Image characteristics Light microscopy Holography Point scanning QPI methods Principles of full-field QPI Off-axis full-field methods Phase-shifting techniques Common-path methods White light techniques Fourier transform light scattering (FTLS) Current trends in QPI
Written by leading optical phase microscopy experts, this book is a comprehensive reference to phase microscopy and nanoscopy techniques for biomedical applications, including differential interference contrast (DIC) microscopy, phase contrast microscopy, digital holographic microscopy, optical coherence tomography, tomographic phase microscopy, spectral-domain phase detection, and nanoparticle usage for phase nanoscopy The Editors show biomedical and optical engineers how to use phase microscopy for visualizing unstained specimens, and support the theoretical coverage with applied content and examples on designing systems and interpreting results in bio- and nanoscience applications. Provides a comprehensive overview of the principles and techniques of optical phase microscopy and nanoscopy with biomedical applications. Tips/advice on building systems and working with advanced imaging biomedical techniques, including interpretation of phase images, and techniques for quantitative analysis based on phase microscopy. Interdisciplinary approach that combines optical engineering, nanotechnology, biology and medical aspects of this topic. Each chapter includes practical implementations and worked examples.
In this book, computational optical phase imaging techniques are presented along with Matlab codes that allow the reader to run their own simulations and gain a thorough understanding of the current state-of-the-art. The book focuses on modern applications of computational optical phase imaging in engineering measurements and biomedical imaging. Additionally, it discusses the future of computational optical phase imaging, especially in terms of system miniaturization and deep learning-based phase retrieval.
The editor has incorporated scientific contributions from a diverse group of leading researchers in the field of hematology and related blood cell research. This book aims to provide an overview of current knowledge pertaining to our understanding of hematology. The main subject areas will include blood cell morphology and function, the pathophysiology and genetics of hematological disorders and malignancies, blood testing and typing, and the processes governing hematopoiesis. Blood cell physiology, biochemistry and blood flow are covered in this book. This text is designed for hematologists, pathologists and laboratory staff in training and in practice. The work presented in this book will be of benefit to medical students and to researchers of hematology and blood flow in the microcirculation.This book is written primarily for those who have some knowledge of chemistry, biochemistry and general hematology. The authors of each section bring a strong clinical emphasis to the book.
Mechanics of Biological Systems and Materials, Volume 6 of the Proceedings of the 2016 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the sixth volume of ten from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including: Soft Material Mechanics Bio-Engineering and Biomechanics Cells Mechanics Biomaterials and Mechanics Across Multiple Scales Biomechanics Biotechnologies Traumatic Brain Injury Mechanics
This book deals with the latest achievements in the field of optical coherent microscopy. While many other books exist on microscopy and imaging, this book provides a unique resource dedicated solely to this subject. Similarly, many books describe applications of holography, interferometry and speckle to metrology but do not focus on their use for microscopy. The coherent light microscopy reference provided here does not focus on the experimental mechanics of such techniques but instead is meant to provide a users manual to illustrate the strengths and capabilities of developing techniques. The areas of application of this technique are in biomedicine, medicine, life sciences, nanotechnology and materials sciences.
Mechanobiology of Cell-Matrix Interactions focuses on characterization and modeling of interactions between cells and their local extracellular environment, exploring how these interactions may mediate cell behavior. Studies of cell-matrix interactions rely on integrating engineering, (molecular and cellular) biology, and imaging disciplines. Recent advances in the field have begun to unravel our understanding of how cells gather information from their surrounding environment, and how they interrogate such information during the cell fate decision making process. Topics include adhesive and integrin-ligand interactions; extracellular influences on cell biology and behavior; cooperative mechanisms of cell-cell and cell-matrix interactions; the mechanobiology of pathological processes; (multi-scale) modeling approaches to describe the complexity or cell-matrix interactions; and quantitative methods required for such experimental and modeling studies.
Understanding live cells at the single molecule level is the most important and single major challenge facing biology and medicine today. Nanobiology focuses on the properties and structure of complex assemblies of biomolecules—biochips and molecular motors, for example—in conjunction with distinctive surfaces, rods, dots, and materials of nanoscience. Nano Cell Biology will describe the current applications of nanobiology to the study of the structure, function, and metabolic processes of cells. - Provides historical background on this newly emerging field - Covers the latest application of new instrumentation in the field - Detailed protocols in the study of live cells at the nanometer level - Discusses future technologies and their applications in the study of living cells
This timely book presents cutting-edge developments by experts in the field on the rapidly developing and scientifically challenging area of full-field measurement techniques used in solid mechanics – including photoelasticity, grid methods, deflectometry, holography, speckle interferometry and digital image correlation. The evaluation of strains and the use of the measurements in subsequent parameter identification techniques to determine material properties are also presented. Since parametric identification techniques require a close coupling of theoretical models and experimental measurements, the book focuses on specific modeling approaches that include finite element model updating, the equilibrium gap method, constitutive equation gap method, virtual field method and reciprocity gap method. In the latter part of the book, the authors discuss two particular applications of selected methods that are of special interest to many investigators: the analysis of localized phenomenon and connections between microstructure and constitutive laws. The final chapter highlights infrared measurements and their use in the mechanics of materials. Written and edited by knowledgeable scientists, experts in their fields, this book will be a valuable resource for all students, faculties and scientists seeking to expand their understanding of an important, growing research area