Download Free Measurements Of Z And Z Production In Pp Collisions At S Book in PDF and EPUB Free Download. You can read online Measurements Of Z And Z Production In Pp Collisions At S and write the review.

This thesis describes searches for new particles predicted by the super symmetry (SUSY) theory, a theory extending beyond the current Standard Model of particle physics, using the ATLAS detector at the CERN Large Hadron Collider. The thesis focuses on searches for stop and sbottom squarks, the SUSY partners of the top and bottom quarks, which are expected to be lighter than the partners of the first and second generation quarks and therefore good candidates for the first evidence of SUSY. It describes novel techniques for estimating and rejecting the Standard-Model backgrounds to searches for these particles. It also includes an independent analysis seeking to constrain the Standard Model ttZ background process, which also represents the first ATLAS search for this rare process at the LHC. The stop squark analysis described, with substantial leading contributions from the author, is the first search for these particles at the LHC to use the jets plus missing transverse energy plus 0-lepton signature and provides the world's best limits on the stop mass for light neutralino LSPs. All in all, the thesis describes three different world-leading analyses in both Standard Model and SUSY physics and therefore represents a major contribution to the field.
The project reported here was a search for new super symmetric particles in proton-proton collisions at the LHC. It has produced some of the world’s best exclusion limits on such new particles. Furthermore, dedicated simulation studies and data analyses have also yielded essential input to the upgrade activities of the CMS collaboration, both for the Phase-1 pixel detector upgrade and for the R&D studies in pursuit of a Phase-2 end cap calorimeter upgrade.
The book discusses the recent experimental results obtained at the LHC that involve electroweak bosons. The results are placed into an appropriate theoretical and historical context. The work pays special attention to the rising subject of hadronically decaying bosons with high boosts, documenting the state-of-the-art identification techniques and highlighting typical results. The text is not limited to electroweak physics in the strict sense, but also discusses the use of electroweak vector-bosons as tool in the study of other subjects in particle physics, such as determinations of the proton structure or the search for new exotic particles. The book is particularly well suited for graduate students, starting their thesis work on topics that involve electroweak bosons, as the book provides a comprehensive description of phenomena observable at current accelerators as well as a summary of the most relevant experimental techniques.
Many high-energy collider experiments (including the current Large Hadron Collider at CERN) involve the collision of hadrons. Hadrons are composite particles consisting of partons (quarks and gluons), and this means that in any hadron-hadron collision there will typically be multiple collisions of the constituents — i.e. multiple parton interactions (MPI). Understanding the nature of the MPI is important in terms of searching for new physics in the products of the scatters, and also in its own right to gain a greater understanding of hadron structure. This book aims at providing a pedagogical introduction and a comprehensive review of different research lines linked by an involvement of MPI phenomena. It is written by pioneers as well as young leading scientists, and reviews both experimental findings and theoretical developments, discussing also the remaining open issues.
This work covers the required mathematical and theoretical tools required for understanding the Standard Model of particle physics. It explains the accelerator and detector physics which are needed for the experiments that underpin the Standard Model.
This book of proceedings is composed of articles based on the presentations at LISHEP 2018, centering on the main theme of the conference 'Heavy Particles and Flavours', with a focus on recent results and developments from the experiments at the Large Hadron Collider.
This concise primer reviews the latest developments in the field of jets. Jets are collinear sprays of hadrons produced in very high-energy collisions, e.g. at the LHC or at a future hadron collider. They are essential to and ubiquitous in experimental analyses, making their study crucial. At present LHC energies and beyond, massive particles around the electroweak scale are frequently produced with transverse momenta that are much larger than their mass, i.e., boosted. The decay products of such boosted massive objects tend to occupy only a relatively small and confined area of the detector and are observed as a single jet. Jets hence arise from many different sources and it is important to be able to distinguish the rare events with boosted resonances from the large backgrounds originating from Quantum Chromodynamics (QCD). This requires familiarity with the internal properties of jets, such as their different radiation patterns, a field broadly known as jet substructure. This set of notes begins by providing a phenomenological motivation, explaining why the study of jets and their substructure is of particular importance for the current and future program of the LHC, followed by a brief but insightful introduction to QCD and to hadron-collider phenomenology. The next section introduces jets as complex objects constructed from a sequential recombination algorithm. In this context some experimental aspects are also reviewed. Since jet substructure calculations are multi-scale problems that call for all-order treatments (resummations), the bases of such calculations are discussed for simple jet quantities. With these QCD and jet physics ingredients in hand, readers can then dig into jet substructure itself. Accordingly, these notes first highlight the main concepts behind substructure techniques and introduce a list of the main jet substructure tools that have been used over the past decade. Analytic calculations are then provided for several families of tools, the goal being to identify their key characteristics. In closing, the book provides an overview of LHC searches and measurements where jet substructure techniques are used, reviews the main take-home messages, and outlines future perspectives.
This book presents the latest results from high energy physics laboratories. The topics discussed include: Cosmology, Heavy Ions, Electroweak, Heavy Flavour Physics and CP Violation/Rare Decays, QCD and Beyond the Standard Model, Planck Scale Physics, Accelerator and Non-Accelerator Physics and Instrumentation.