Download Free Measurements Of The Surface Flows Heat Transfer Pressure Distribution And Longitudinal Stability Of A Mercury Capsule Model At Mach Numbers Of 69 And 96 Book in PDF and EPUB Free Download. You can read online Measurements Of The Surface Flows Heat Transfer Pressure Distribution And Longitudinal Stability Of A Mercury Capsule Model At Mach Numbers Of 69 And 96 and write the review.

This edition of this this flight stability and controls guide features an unintimidating math level, full coverage of terminology, and expanded discussions of classical to modern control theory and autopilot designs. Extensive examples, problems, and historical notes, make this concise book a vital addition to the engineer's library.
Accompanying DVD-ROM contains ... "all chapters of the Springer Handbook."--Page 3 of cover.
This book is a self-contained text for those students and readers interested in learning hypersonic flow and high-temperature gas dynamics. It assumes no prior familiarity with either subject on the part of the reader. If you have never studied hypersonic and/or high-temperature gas dynamics before, and if you have never worked extensively in the area, then this book is for you. On the other hand, if you have worked and/or are working in these areas, and you want a cohesive presentation of the fundamentals, a development of important theory and techniques, a discussion of the salient results with emphasis on the physical aspects, and a presentation of modern thinking in these areas, then this book is also for you. In other words, this book is designed for two roles: 1) as an effective classroom text that can be used with ease by the instructor, and understood with ease by the student; and 2) as a viable, professional working tool for engineers, scientists, and managers who have any contact in their jobs with hypersonic and/or high-temperature flow.
A brand-new edition of the classic guide on low-speed wind tunnel testing While great advances in theoretical and computational methods have been made in recent years, low-speed wind tunnel testing remains essential for obtaining the full range of data needed to guide detailed design decisions for many practical engineering problems. This long-awaited Third Edition of William H. Rae, Jr.'s landmark reference brings together essential information on all aspects of low-speed wind tunnel design, analysis, testing, and instrumentation in one easy-to-use resource. Written by authors who are among the most respected wind tunnel engineers in the world, this edition has been updated to address current topics and applications, and includes coverage of digital electronics, new instrumentation, video and photographic methods, pressure-sensitive paint, and liquid crystal-based measurement methods. The book is organized for quick access to topics of interest, and examines basic test techniques and objectives of modeling and testing aircraft designs in low-speed wind tunnels, as well as applications to fluid motion analysis, automobiles, marine vessels, buildings, bridges, and other structures subject to wind loading. Supplemented with real-world examples throughout, Low-Speed Wind Tunnel Testing, Third Edition is an indispensable resource for aerospace engineering students and professionals, engineers and researchers in the automotive industries, wind tunnel designers, architects, and others who need to get the most from low-speed wind tunnel technology and experiments in their work.
This volume from The NASA History Series presents an overview of the science of hypersonics, the study of flight at speeds at which the physics of flows is dominated by aerodynamic heating. The survey begins during the years immediately following World War II, with the first steps in hypersonic research: the development of missile nose cones and the X-15; the earliest concepts of hypersonic propulsion; and the origin of the scramjet engine. Next, it addresses the re-entry problem, which came to the forefront during the mid-1950s, showing how work in this area supported the manned space program and contributed to the development of the orbital shuttle. Subsequent chapters explore the fading of scramjet studies and the rise of the National Aerospace Plane (NASP) program of 1985–95, which sought to lay groundwork for single-stage vehicles. The program's ultimate shortcomings — in terms of aerodynamics, propulsion, and materials — are discussed, and the book concludes with a look at hypersonics in the post-NASP era, including the development of the X-33 and X-34 launch vehicles, further uses for scramjets, and advances in fluid mechanics. Clearly, ongoing research in hypersonics has yet to reach its full potential, and readers with an interest in aeronautics and astronautics will find this book a fascinating exploration of the field's history and future.
A modern treatment of hypersonic aerothermodynamics for students, engineers, scientists, and program managers involved in the study and application of hypersonic flight. It assumes an understanding of the basic principles of fluid mechanics, thermodynamics, compressible flow, and heat transfer. Ten chapters address: general characterization of hypersonic flows; basic equations of motion; defining the aerothermodynamic environment; experimental measurements of hypersonic flows; stagnation-region flowfield; the pressure distribution; the boundary layer and convective heat transfer; aerodynamic forces and moments; viscous interactions; and aerothermodynamics and design considerations. Includes sample exercises and homework problems. Annotation copyright by Book News, Inc., Portland, OR
The Manual of Tests and Criteria contains criteria, test methods and procedures to be used for classification of dangerous goods according to the provisions of Parts 2 and 3 of the United Nations Recommendations on the Transport of Dangerous Goods, Model Regulations, as well as of chemicals presenting physical hazards according to the Globally Harmonized System of Classification and Labelling of Chemicals (GHS). As a consequence, it supplements also national or international regulations which are derived from the United Nations Recommendations on the Transport of Dangerous Goods or the GHS. At its ninth session (7 December 2018), the Committee adopted a set of amendments to the sixth revised edition of the Manual as amended by Amendment 1. This seventh revised edition takes account of these amendments. In addition, noting that the work to facilitate the use of the Manual in the context of the GHS had been completed, the Committee considered that the reference to the "Recommendations on the Transport of Dangerous Goods" in the title of the Manual was no longer appropriate, and decided that from now on, the Manual should be entitled "Manual of Tests and Criteria".
Through ten editions, Fox and McDonald's Introduction to Fluid Mechanics has helped students understand the physical concepts, basic principles, and analysis methods of fluid mechanics. This market-leading textbook provides a balanced, systematic approach to mastering critical concepts with the proven Fox-McDonald solution methodology. In-depth yet accessible chapters present governing equations, clearly state assumptions, and relate mathematical results to corresponding physical behavior. Emphasis is placed on the use of control volumes to support a practical, theoretically-inclusive problem-solving approach to the subject. Each comprehensive chapter includes numerous, easy-to-follow examples that illustrate good solution technique and explain challenging points. A broad range of carefully selected topics describe how to apply the governing equations to various problems, and explain physical concepts to enable students to model real-world fluid flow situations. Topics include flow measurement, dimensional analysis and similitude, flow in pipes, ducts, and open channels, fluid machinery, and more. To enhance student learning, the book incorporates numerous pedagogical features including chapter summaries and learning objectives, end-of-chapter problems, useful equations, and design and open-ended problems that encourage students to apply fluid mechanics principles to the design of devices and systems.
The purpose of this manual is to provide recovery system engineers in government and industry with tools to evaluate, analyze, select, and design parachute recovery systems. These systems range from simple, one-parachute assemblies to multiple-parachute systems, and may include equipment for impact attenuation, flotation, location, retrieval, and disposition. All system aspects are discussed, including the need for parachute recovery, the selection of the most suitable recovery system concept, concept analysis, parachute performance, force and stress analysis, material selection, parachute assembly and component design, and manufacturing. Experienced recovery system engineers will find this publication useful as a technical reference book; recent college graduates will find it useful as a textbook for learning about parachutes and parachute recovery systems; and technicians with extensive practical experience will find it useful as an engineering textbook that includes a chapter on parachute- related aerodynamics. In this manual, emphasis is placed on aiding government employees in evaluating and supervising the design and application of parachute systems. The parachute recovery system uses aerodynamic drag to decelerate people and equipment moving in air from a higher velocity to a lower velocity and to a safe landing. This lower velocity is known as rate of descent, landing velocity, or impact velocity, and is determined by the following requirements: (1) landing personnel uninjured and ready for action, (2) landing equipment and air vehicles undamaged and ready for use or refurbishment, and (3) impacting ordnance at a preselected angle and velocity.