Download Free Measurements Of And Relation Between The Adhesion And Friction Of Two Surfaces Separated By Molecularly Thin Liquid Films Book in PDF and EPUB Free Download. You can read online Measurements Of And Relation Between The Adhesion And Friction Of Two Surfaces Separated By Molecularly Thin Liquid Films and write the review.

Recent research has led to a deeper understanding of the nature and consequences of interactions between materials on an atomic scale. The results have resonated throughout the field of tribology. For example, new applications require detailed understanding of the tribological process on macro- and microscales and new knowledge guides the rational
A new technique is described for sliding (shearing) two molecularly smooth surfaces laterally past each other in liquids while monitoring their exact contact area, the normal and transverse forces, and the surface separation. First, we show that the elastic deformations of two initially curved surfaces in adhesive contact are the same under static and dynamic (i.e., sliding) conditions. Detailed results are then presented of how the shear properties of thin films of water and a simple nonpolar liquid are "quantized" with the number of layers. Results with water as the intervening liquid, as well as the effects of humidity on sliding in air, reveal that more complex mechanisms are operating than with simple liquids which appear to be related to the complex "hydration" forces between two surfaces in water or in aqueous salt solutions. The results suggest a close correlation between the static forces and shear properties of very thin liquid films, and the molecular structure of the liquids confined within such films.
Specifically dedicated to polymer and biopolymer systems, Polymer Adhesion, Friction, and Lubrication guides readers to the scratch, wear, and lubrication properties of polymers and the engineering applications, from biomedical research to automotive engineering. Author Hongbo Zeng details different experimental and theoretical methods used to probe static and dynamic properties of polymer materials and biomacromolecular systems. Topics include the use of atomic force microscopy (AFM) to analyze nanotribology, polymer thin films and brushes, nanoparticles, rubber and tire technology, synovial joint lubrication, adhesion in paper products, bioMEMS, and electrorheological fluids.
This second edition of Handbook of Micro/Nanotribology addresses the rapid evolution within this field, serving as a reference for the novice and the expert alike. Two parts divide this handbook: Part I covers basic studies, and Part II addresses design, construction, and applications to magnetic storage devices and MEMS. Discussions include: surface physics and methods for physically and chemically characterizing solid surfaces roughness characterization and static contact models using fractal analysis sliding at the interface and friction on an atomic scale scratching and wear as a result of sliding nanofabrication/nanomachining as well as nano/picoindentation lubricants for minimizing friction and wear surface forces and microrheology of thin liquid films measurement of nanomechanical properties of surfaces and thin films atomic-scale simulations of interfacial phenomena micro/nanotribology and micro/nanomechanics of magnetic storage devices This comprehensive book contains 16 chapters contributed by more than 20 international researchers. In each chapter, the presentation starts with macroconcepts and then lead to microconcepts. With more than 500 illustrations and 50 tables, Handbook of Micro/Nanotribology covers the range of relevant topics, including characterization of solid surfaces, measurement techniques and applications, and theoretical modeling of interfaces. What's New in the Second Edition? New chapters on: AFM instrumentation Surface forces and adhesion Design and construction of magnetic storage devices Microdynamical devices and systems Mechanical properties of materials in microstructure Micro/nanotribology and micro/nanomechanics of MEMS devices
Proceedings of the NATO Advanced Research Workshop, Bergen, Norway, June 24-25, 1991
Very thin film materials have emerged as a highly interesting and useful quasi 2D-state functionality. They have given rise to numerous applications ranging from protective and smart coatings to electronics, sensors and display technology as well as serving biological, analytical and medical purposes. The tailoring of polymer film properties and functions has become a major research field. As opposed to the traditional treatise on polymer and resin-based coatings, this one-stop reference is the first to give readers a comprehensive view of the latest macromolecular and supramolecular film-based nanotechnology. Bringing together all the important facets and state-of-the-art research, the two well-structured volumes cover film assembly and depostion, functionality and patterning, and analysis and characterization. The result is an in-depth understanding of the phenomena, ordering, scale effects, fabrication, and analysis of polymer ultrathin films. This book will be a valuable addition for Materials Scientists, Polymer Chemists, Surface Scientists, Bioengineers, Coatings Specialists, Chemical Engineers, and Scientists working in this important research field and industry.
This volume represents the latest issue of a collection of Proceedings each dealing with a different topic in Tribology. This volume contains the Proceedings from the 23rd Leeds-Lyon Symposium which addressed the topic of Elastohydrodynamics and was attended by many international experts in the field. The Keynote Address was presented by Professor Stathis Ioannides on the subject of "Tribology in Rolling Element Bearings" and was followed by fifteen other sessions covering a wide variety of general areas from "Experimental" to "Lubricant Properties". In addition, nine other invited technical papers were presented to support the sessions.
Friction, lubrication, adhesion, and wear are prevalent physical phenomena in everyday life and in many key technologies. This book explains how these tribological phenomena originate from atomistic and microscale physical phenomena and shows how this understanding can be used to solve macroscale tribology problems.
This volume serves as a timely, practical introduction to the principles of nanotribology and nanomechanics and applications to magnetic storage systems and MEMS/NEMS. Assuming some familiarity with macrotribology/mechanics, the book comprises chapters by internationally recognized experts, who integrate knowledge of the field from the mechanics and materials-science perspectives. Graduate students, research workers, and practicing engineers will find the book of value.