Download Free Measurement Of Unsaturated Hydraulic Properties And Evaluation Of Property Transfer Models For Deep Sedimentary Interbeds Idaho National Laboratory Idaho Book in PDF and EPUB Free Download. You can read online Measurement Of Unsaturated Hydraulic Properties And Evaluation Of Property Transfer Models For Deep Sedimentary Interbeds Idaho National Laboratory Idaho and write the review.

This book presents an overview of techniques that are available to characterize sedimentary aquifers. Groundwater flow and solute transport are strongly affected by aquifer heterogeneity. Improved aquifer characterization can allow for a better conceptual understanding of aquifer systems, which can lead to more accurate groundwater models and successful water management solutions, such as contaminant remediation and managed aquifer recharge systems. This book has an applied perspective in that it considers the practicality of techniques for actual groundwater management and development projects in terms of costs, technical resources and expertise required, and investigation time. A discussion of the geological causes, types, and scales of aquifer heterogeneity is first provided. Aquifer characterization methods are then discussed, followed by chapters on data upscaling, groundwater modelling, and geostatistics. This book is a must for every practitioner, graduate student, or researcher dealing with aquifer characterization .
Seismic measurements take many forms, and appear to have a universal role in the Earth Sciences. They are the means for most easily and economically interpreting what lies beneath the visible surface. There are huge economic rewards and losses to be made when interpreting the shallow crust or subsurface more, or less accurately, as the case may be.
This exclusive compilation written by eminent experts from more than ten countries, outlines the processes and methods for geologic sequestration in different sinks. It discusses and highlights the details of individual storage types, including recent advances in the science and technology of carbon storage. The topic is of immense interest to geoscientists, reservoir engineers, environmentalists and researchers from the scientific and industrial communities working on the methodologies for carbon dioxide storage. Increasing concentrations of anthropogenic carbon dioxide in the atmosphere are often held responsible for the rising temperature of the globe. Geologic sequestration prevents atmospheric release of the waste greenhouse gases by storing them underground for geologically significant periods of time. The book addresses the need for an understanding of carbon reservoir characteristics and behavior. Other book volumes on carbon capture, utilization and storage (CCUS) attempt to cover the entire process of CCUS, but the topic of geologic sequestration is not discussed in detail. This book focuses on the recent trends and up-to-date information on different storage rock types, ranging from deep saline aquifers to coal to basaltic formations.
Groundwater Science, 2E, covers groundwater's role in the hydrologic cycle and in water supply, contamination, and construction issues. It is a valuable resource for students and instructors in the geosciences (with focuses in hydrology, hydrogeology, and environmental science), and as a reference work for professional researchers. This interdisciplinary text weaves important methods and applications from the disciplines of physics, chemistry, mathematics, geology, biology, and environmental science, introducing you to the mathematical modeling and contaminant flow of groundwater. New to the Second Edition:. New chapter on subsurface heat flow and geothermal systems. Expanded content on well construction and design, surface water hydrology, groundwater/ surface water interaction, slug tests, pumping tests, and mounding analysis.. Updated discussions of groundwater modeling, calibration, parameter estimation, and uncertainty. Free software tools for slug test analysis, pumping test analysis, and aquifer modeling. Lists of key terms and chapter contents at the start of each chapter. Expanded end-of-chapter problems, including more conceptual questions. Two-color figures. Homework problems at the end of each chapter and worked examples throughout. Companion website with videos of field exploration and contaminant migration experiments, PDF files of USGS reports, and data files for homework problems. PowerPoint slides and solution manual for adopting faculty.
Scientific understanding of fluid flow in rock fracturesâ€"a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storageâ€"has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.
Mankind has manipulated the quantity and quality of soil water for millennia. Food production was massively increased through fertilization, irrigation and drainage. But malpractice also caused degradation of immense areas of once fertile land, rendering it totally unproductive for many generations. In populated areas, the pollutant load ever more often exceeds the soil’s capacity for buffering and retention, and large volumes of potable groundwater have been polluted or are threatened to be polluted in the foreseeable future. In the past decades, the role of soil water in climate patterns has been recognized but not yet fully understood. The soil-science community responded to this diversity of issues by developing numerical models to simulate the behavior of water and solutes in soils. These models helped improve our understanding of unsaturated-zone processes and develop sustainable land-management practices. Aimed at professional soil scientists, soil-water modelers, irrigation engineers etc., this book discusses our progress in soil-water modeling. Top scientists present case studies, overviews and analyses of strengths, weaknesses, opportunities and threats related to soil-water modeling. The contributions cover a wide range of spatial scales, and discuss fundamental aspects of unsaturated-zone modeling as well as issues related to the application of models to real-world problems.
At hundreds of thousands of commercial, industrial, and military sites across the country, subsurface materials including groundwater are contaminated with chemical waste. The last decade has seen growing interest in using aggressive source remediation technologies to remove contaminants from the subsurface, but there is limited understanding of (1) the effectiveness of these technologies and (2) the overall effect of mass removal on groundwater quality. This report reviews the suite of technologies available for source remediation and their ability to reach a variety of cleanup goals, from meeting regulatory standards for groundwater to reducing costs. The report proposes elements of a protocol for accomplishing source remediation that should enable project managers to decide whether and how to pursue source remediation at their sites.
Published by the American Geophysical Union as part of the Water Resources Monograph Series, Volume 18. Landslides are a constant in shaping our landscape. Whether by large episodic, or smaller chronic, mass movements, our mountains, hills, valleys, rivers, and streams bear evidence of change from landslides. Combined with anthropogenic factors, especially the development and settlement of unstable terrain, landslides (as natural processes) have become natural disasters. This book charts our understanding of landslide processes, prediction methods, and related land use issues. How and where do landslides initiate? What are the human and economic consequences? What hazard assessment and prediction methods are available, and how well do they work? How does land use, from timber harvesting and road building to urban and industrial development, affect landslide distribution in time and space? And what is the effect of land use and climate change on landslides? This book responds to such questions with: • Synopses of how various land uses and management activities influence landslide behavior • Analyses of earth surface processes that affect landslide frequency and extent • Examples of prediction techniques and methods of landslide hazard assessment, including scales of application • Discussion of landslide types and related costs and damages Those who study landslides, and those who deal with landslides, from onset to after-effects—including researchers, engineers, land managers, educators, students, and policy makers—will find this work a benchmark reference, now and for years to come.