Download Free Measurement Of The Z Boson Transverse Momentum Distribution In Pp Collisions At Square Roots Book in PDF and EPUB Free Download. You can read online Measurement Of The Z Boson Transverse Momentum Distribution In Pp Collisions At Square Roots and write the review.

This thesis provides a detailed and comprehensive description of the search for New Physics at the Large Hadron Collider (LHC) in the mono-jet final state, using the first 3.2 fb-1 of data collected at the centre of mass energy of colliding protons of 13~TeV recorded in the ATLAS experiment at LHC. The results are interpreted as limits in different theoretical contexts such as compressed supersymmetric models, theories that foresee extra-spatial dimensions and in the dark matter scenario. In the latter the limits are then compared with those obtained by other ATLAS analyses and by experiments based on completely different experimental techniques, highlighting the role of the mono-jet results in the context of dark matter searches.Lastly, a set of possible analysis improvements are proposed to reduce the main uncertainties that affect the signal region and to increase the discovery potential by further exploiting the information on the final state.
Giving an accurate account of the concepts, theorems and their justification, this book is a systematic treatment of perturbative QCD. It relates the concepts to experimental data, giving strong motivations for the methods. Ideal for graduate students starting their work in high-energy physics, it will also interest experienced researchers.
Understanding of protons and neutrons, or "nucleons"â€"the building blocks of atomic nucleiâ€"has advanced dramatically, both theoretically and experimentally, in the past half century. A central goal of modern nuclear physics is to understand the structure of the proton and neutron directly from the dynamics of their quarks and gluons governed by the theory of their interactions, quantum chromodynamics (QCD), and how nuclear interactions between protons and neutrons emerge from these dynamics. With deeper understanding of the quark-gluon structure of matter, scientists are poised to reach a deeper picture of these building blocks, and atomic nuclei themselves, as collective many-body systems with new emergent behavior. The development of a U.S. domestic electron-ion collider (EIC) facility has the potential to answer questions that are central to completing an understanding of atoms and integral to the agenda of nuclear physics today. This study assesses the merits and significance of the science that could be addressed by an EIC, and its importance to nuclear physics in particular and to the physical sciences in general. It evaluates the significance of the science that would be enabled by the construction of an EIC, its benefits to U.S. leadership in nuclear physics, and the benefits to other fields of science of a U.S.-based EIC.
This book gives an introduction to main ideas used in the physics of ultra-relativistic heavy-ion collisions. The links between basic theoretical concepts (discussed gradually from the elementary to more advanced level) and the results of experiments are outlined, so that experimentalists may learn more about the foundations of the models used by them to fit and interpret the data, while theoreticians may learn more about how different theoretical ideas are used in practical applications. The main task of the book is to collect the available information and establish a uniform picture of ultra-relativistic heavy-ion collisions. The properties of hot and dense matter implied by this picture are discussed comprehensively. In particular, the issues concerning the formation of the quark-gluon plasma in present and future heavy-ion experiments are addressed.