Download Free Measurement Of The Energy Spectrum Of Ultra High Energy Cosmic Rays Using Hybrid Data Of The Pierre Auger Observatory Book in PDF and EPUB Free Download. You can read online Measurement Of The Energy Spectrum Of Ultra High Energy Cosmic Rays Using Hybrid Data Of The Pierre Auger Observatory and write the review.

The Pierre Auger Observatory, in Argentina, combines a 3000 $\mathrm{km^2}$ surface array of water Cherenkov detectors with fluorescence telescopes to measure extensive air showers initiated by ultra-high energy cosmic rays. This "hybrid" observatory (in operation since 2004, and completed in 2008) is fully efficient for cosmic rays energies above $10^{18}$ eV, that is, from just below the "ankle" of the energy spectrum up to the highest energies.After the completion of the main observatory, the Auger collaboration has started to deploy new instruments to extend the energy range down to about 0.1 EeV. The planned extensions include two infill surface arrays with 750 and 433 m spacing, with muon detection capabilities, and three additional fluorescence telescopes with a more elevated field of view. The 750 m infill array (covering about 24 $\mathrm{km^2}$) and the new telescopes are now operational. Their aim is the measurement of cosmic rays from below the second knee of the spectrum up to the ankle, where data from the extensions overlap those from the main observatory. The study of the evolutior of the spectrum through the second knee and the ankle, together with the primary mass composition, are crucial to the understanding of the transition from a galactic cosmic ray origin to an extragalactic one.This thesis makes use of data from the 750 m infill array: the objective is the measurement of the cosmic ray energy spectrum in the energy region above $3 \times 10^{17}$ eV, where the array is fully efficient. To get to the energy spectrum, several steps are needed, from the reconstruction of events, through the precise determination of the exposure of the array, up to the determination of the primary energy. The thesis deals with these aspects, before reaching the final result.The first chapter gives a general introduction to cosmic ray physics and detectors. It also summarizes experimental results above the first knee of the spectrum with particular emphasis on those obtained above $10^{17}$ eV. The next two chapters describe the Pierre Auger Observatory and the infill array, respectively. In chapter 2, the main Auger results are summarized too, after a schematic description of th different components of the observatory. Chapter 3 sets the stage for the following chapters. It presents a more detailed description of the characteristics of the infill array, in particular the trigger definitions, event selection and reconstruction. In chapter 4 the performance of the reconstruction of the lateral distribution of observed showers is studied in detail. This is particularly important for the energy spectrum, since the signal at a fixed distance from the shower axis is used as the energy estimator of the event. This signal is estimated by means c the measured lateral distribution of the shower. Chapter 5 presents a comparison between the event reconstruction of the infill and main arrays. Using the set of showers detected by both instruments, the derived geometry and energy estimation are compared, showing a good agreement. In chapter 6, the energy threshold of the array, and hence the set of events to be used, is defined. The methods to obtain the exposure of the array are discussed, as well as related systematic uncertainties. Finally, in chapter 7, the technique to derive the primary energy for each detected shower is presented. The derived energy spectrum is discussed, and the flux is shown to be consistent with that measured by other instruments in the overlapping energy regions.
The Pierre Auger Observatory aims to study the ultra high energy cosmic rays with energies above 1 EeV. To get an accurate measurement of the characteristic of the extensive air showers that the cosmic rays generate in the atmosphere, the Observatory uses a hybrid technique. In this work we have studied the detector performance, including trigger and hardware efficiencies. We have optimized the event selection and estimated the efficiency of the detector acceptance. Uncertainties for event reconstruction were evaluated and propagated to the measured energy spectrum. We have shown that some stations that are not courrently considered part of the event can be included in the event selection procedure. We have studied the effect of loosing the signal of one of the three photomultipliers due to some failure, or the effect of the saturation of the ADC channels or of the photomultiplier to the reconstruction accuracy. The reconstruction uncertainty was also studied in case of ``normal'' events using a method based on fluctuations, to cross-check the results obtained using the fit accuracies. An evaluation of the trigger efficiency was also performed in case one of the three photomultipliers is missing. We have shown that the problems related to the instrumental apparatus only reduce the efficiency where it is not already 100\% and in most of the cases the reconstruction uncertainties are only slightly affected. Furthermore this work gives the first indication that the reconstruction uncertainties of the surface detector data do not change the index of the power law of the measured cosmic rays spectrum.
These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Correlation of the highest energy cosmic rays with nearby extragalactic objects in Pierre Auger Observatory data; (2) Discriminating potential astrophysical sources of the highest energy cosmic rays with the Pierre Auger Observatory; (3) Intrinsic anisotropy of the UHECR from the Pierre Auger Observatory; (4) Ultra-high energy photon studies with the Pierre Auger Observatory; (5) Limits on the flux of diffuse ultra high energy neutrinos set using the Pierre Auger Observatory; (6) Search for sidereal modulation of the arrival directions of events recorded at the Pierre Auger Observatory; (7) Cosmic Ray Solar Modulation Studies in the Pierre Auger Observatory; (8) Investigation of the Displacement Angle of the Highest Energy Cosmic Rays Caused by the Galactic Magnetic Field; (9) Search for coincidences with astrophysical transients in Pierre Auger Observatory data; and (10) An alternative method for determining the energy of hybrid events at the Pierre Auger Observatory.
This revised edition provides an up-to-date summary of the field of ultra-high energy cosmic rays, dealing with their origin, propagation, and composition,. The authors reflect the enormous strides made since the first edition in the realm of experimental work, in particular the use of vastly improved, more sensitive and precise detectors. The level remains introductory and pedagogical, suitable for students and researchers interested in moving into this exciting field. Throughout the text, the authors focus on giving an introductory overview of the key physics issues, followed by a clear and concise description of experimental approaches and current results. Key Features: Updates the most coherent summary of the field available, with new text that provides the reader with clear historical context. Brand new discussion of contemporary space-based experiments and ideas for extending ground-based detectors. Completely new discussion of radio detection methods. Includes a new chapter on small to intermediate-scale anisotropy. Offers new sections on modern hadronic models and software packages to simulate showers.
Ultra-high energy cosmic rays are particles of enormous energy -- greater than 1018 eV -- reaching Earth from still mysterious sources. In this thesis, we analyze data from the Pierre Auger Observatory, a giant cosmic ray detector located in Argentina, to derive information on the mass of ultra-high energy cosmic rays and on their hadronic interaction properties. The data show a change of cosmic ray mass composition as a function of energy. We perform a measurement of the proton-air inelastic cross section, yielding sinelp-air =501+24-23 stat+30 -35syst +30-32 composition mb, at an equivalent energy of 57 TeV in the center of mass of a proton-proton collision -- a range yet inaccessible to particle accelerators. The measured cross section is in good agreement with predictions from hadronic interaction models.
The Pierre Auger Observatory (Auger) in Argentina studies Ultra High Energy Cosmic Rays (UHECRs) physics. The flux of cosmic rays at these energies (above 1018 eV) is very low (less than 100 particle/km2-year) and UHECR properties must be inferred from the measurements of the secondary particles that the cosmic ray primary produces in the atmosphere. These particles cascades are called Extensive Air Showers (EAS) and can be studied at ground by deploying detectors covering large areas. The EAS physics is complex, and the properties of secondary particles depend strongly on the first interaction, which takes place at an energy beyond the ones reached at accelerators. As a consequence, the analysis of UHECRs is subject to large uncertainties and hence many of their properties, in particular their composition, are still unclear. Two complementary techniques are used at Auger to detect EAS initiated by UHE- CRs: a 3000 km2 surface detector (SD) array of water Cherenkov tanks which samples particles at ground level and fluorescence detectors (FD) which collect the ultraviolet light emitted by the de-excitation of nitrogen nuclei in the atmosphere, and can operate only in clear, moonless nights. Auger is the largest cosmic rays detector ever built and it provides high-quality data together with unprecedented statistics. The main goal of this thesis is the measurement of UHECR mass composition using data from the SD of the Pierre Auger Observatory. Measuring the cosmic ray composition at the highest energies is of fundamental importance from the astrophysical point of view, since it could discriminate between different scenarios of origin and propagation of cosmic rays. Moreover, mass composition studies are of utmost importance for particle physics. As a matter of fact, knowing the composition helps in exploring the hadronic interactions at ultra-high energies, inaccessible to present accelerator experiments.
The Pierre Auger Observatory studies Ultra High Energy Cosmic Rays (UHECRs) physics. The flux of UHECRs is very low (less than 1 particle/km2-year) and their properties must be inferred from the measurements of the secondary particles that the cosmic ray primary produces in the atmosphere. These particles cascades are called Extensive Air Showers (EAS) and can be studied at ground by deploying detectors covering large areas. The EAS physics is complex, and the properties of secondary particles depend strongly on the first interaction, which takes place at an energy beyond the ones reached at accelerators. As a consequence, the analysis of UHECRs is subject to large uncertainties and hence many of their properties, in particular their composition, are still unclear. Two complementary techniques are used at Auger to detect EAS initiated by UHECRs: a 3000 km2 surface detector (SD) array of water Cherenkov tanks which samples particles at ground level and fluorescence detectors (FD) which collect the ultraviolet light emitted by the de-excitation of nitrogen nuclei in the atmosphere, and can operate only in clear, moonless nights. The main goal of this thesis is the measurement of UHECR mass composition using data from the SD of the Pierre Auger Observatory. Measuring the cosmic ray composition at the highe-st energies is of fundamental importance for particle physics and astrophysics. Indeed, it allows to explore the hadronic interactions at ultra-high energies, and to discriminate between different scenarios of origin and propagation of cosmic rays.
Cosmic ray physics has recently attracted a great deal of attention from the high energy physics community because of the discovery of new sources and the advent of new techniques. The result of a series of lectures prepared for graduate students and postdoctoral researchers, this book is a general introduction to experimental techniques and results in the field of ultrahigh energy cosmic rays. It succinctly summarizes the rapidly developing field, and provides modern results that include data from newer detectors. Combining experiment and theory, the text explores the results of a single, easy-to-understand experiment to tie together various issues involved in the physics of ultrahigh energy cosmic rays.