Download Free Measurement Of The Cross Section For T Anti T Production In P Anti P Collisions Using The Kinematics Of Lepton Jets Events Book in PDF and EPUB Free Download. You can read online Measurement Of The Cross Section For T Anti T Production In P Anti P Collisions Using The Kinematics Of Lepton Jets Events and write the review.

The authors present a measurement of the top pair production cross section in p{bar p} collisions at √s = 1.96 TeV. We collect a data sample with an integrated luminosity of 194 ± 11 pb−1 with the CDF II detector at the Fermilab Tevatron. We use an artificial neural network technique to discriminate between top pair production and background processes in a sample of 519 lepton + jets events, which have one isolated energetic charged lepton, large missing transverse energy and at least three energetic jets. We measure the top pair production cross section to be [sigma]{sub t{bar t}} = 6.6 ± 1.1 ± 1.5 pb, where the first uncertainty is statistical and the second is systematic.
We present two measurements of the t{bar t} production cross section in collisions of protons and antiprotons at {radical}s = 196 TeV. We analyze a dataset of 310 {+-} 20 pb{sup -1} collected with the CDF 2 detector. In the first measurement, we select events with six to eight jets, at least one of which having a displaced secondary vertex, little or no missing transverse energy and optimized kinematical criteria consistent with the t{bar t} all-hadronic decay channel. In the second measurement, we select events with four or more jets, at least one of which having a displaced secondary vertex, high missing transverse energy, and optimized kinematical criteria consistent with the decay of t{bar t} to {tau}+jets. The averaged t{bar t} production cross section, determined from six different measurements using the CDF 2 detector in the dilepton, lepton+jets and all-hadronic decay channels, is also calculated to be {sigma}{sub t{bar t}} = 7.1 {+-} 0.6(stat) {+-} 0.7(syst) {+-} 0.4(lumi) pb, in agreement with the prediction of the standard model.
We report a new measurement of the t{bar t} production cross section in p{bar p} collisions at a center-of-mass energy of 1.96 TeV using events with one charged lepton (electron or muon), missing transverse energy, and jets. Using 425 pb−1 of data collected using the D0 detector at the Fermilab Tevatron Collider, and enhancing the t{bar t} content of the sample by tagging b jets with a secondary vertex tagging algorithm, the t{bar t} production cross section is measured to be: [sigma]{sub p{bar p} → t{bar t}+X} = 6.6 ± 0.9(stat + syst) ± 0.4(lum) pb. This cross section is the most precise D0 measurement to date for t{bar t} production and is in good agreement with standard model expectations.
The authors present a measurement of the t{bar t} production cross section using events with one charged lepton and jets from p{bar p} collisions at a center-of-mass energy of 1.96 TeV. A b-tagging algorithm based on the probability of displaced tracks coming from the event interaction vertex is applied to identify b quarks from top decay. Using 318 pb−1 of data collected with the CDF II detector, they measure the t{bar t} production cross section in events with at least one restrictive (tight) b-tagged jet and obtain 8.9{sub -1.0}{sup +1.0}(stat.){sub -1.0}{sup +1.1}(syst.) pb. The cross section value assumes a top quark mass of m{sub t} is presented in the paper. This result is consistent with other CDF measurements of the t{bar t} cross section using different samples and analysis techniques, and has similar systematic uncertainties. They have also performed consistency checks by using the b-tagging probability function to vary the signal to background ratio and also using events that have at least two b-tagged jets.
We present the measurement of the t{bar t} cross section in the lepton plus jets channel with {ge} 1 and {ge} 2 secondary vertex tags. We use the scalar sum of transverse energies of the event (H{sub T}) to discriminate t{bar t} from the other backgrounds. We also use the transverse mass of the leptonic W-boson (M{sub T}{sup W}) to further reduce the Non-W backgrounds. We use a combination of data and Monte Carlo to estimate the backgrounds from electroweak processes, single top, fake leptons, W+ Light Flavor fake tags, and real W+ Heavy Flavor production. We obtain a value of {sigma} {sub {ge}1} = 8.7{sub -0.9}{sup +0.9}(stat){sub -0.9}{sup +1.2}(sys) pb for the {ge}1 tag cross section, and {sigma}{sub {ge}2} = 8.7{sub -1.6}{sup +1.8}(stat){sub -1.3}{sup +1.9}(sys) pb for the {ge}2 tag cross section. The authors also present a measurement of the t{bar t} cross section by fitting the N{sub jet} spectrum. They combine the =1 and {ge}2 tag cross sections to obtain {sigma}{sub t{bar t}} = 8.9{sub -0.9}{sup +0.9}(stat){sub -1.3}{sup +1.4}(syst)pb.
I present a measurement of the t{bar t} production cross section at √s = 1.96 TeV using 2034 pb−1 of CDF Run II data using events with a high transverse momentum electron or muon, three or more jets, and missing transverse energy. The measurement assumes a t → Wb branching fraction of 100 percent. Events consistent with t{bar t} decay are found by identifying jets containing heavy-flavor semileptonic decays to muons. The dominant backgrounds are evaluated directly from the data. Based on 248 candidate events and an expected background of 86.8 ± 5.6 events, I measure a production cross section of 8.7 ± 1.1{sub -0.8}{sup +0.9} ± 0.6 pb, in agreement with the Standard Model.
We measure the production cross section of t{bar t} events in p{bar p} collisions at √s = 1.96 TeV. The data was collected by the CDF experiment in Run 2 of the Tevatron accelerator at the Fermi National Accelerator Laboratory between 2002 and 2007. 1.7 fb−1 of data was recorded during this time period. We reconstruct t{bar t} events in the lepton+jets channel, whereby one W boson - resulting from the decay of the top quark pairs - decays leptonically and the other hadronically. The dominant background to this process is the production of W bosons in association with multiple jets. To distinguish t{bar t} from background, we identify soft electrons from the semileptonic decay of heavy flavor jets produced in t{bar t} events. We measure a cross section of [sigma]{sub p{bar p}} = 7.8 ± 2.4(stat) ± 1.6(syst) ± 0.5(lumi).
The direct observation of the top quark was first achieved at the Tevatron proton anti-proton collider at Fermilab. This discovery completed the third generation quark sector where the top quark is expected to accompany the bottom quark in the weak isospin doublet. This dissertation discusses the experimental verification of the production cross section as predicted by the Standard Model. A measurement of the t{bar t} production cross section using 107.9 pb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV collected with the Collider Detector at Fermilab between March of 2003 and June of 2003 is presented. The measurement focuses on the t{bar t} production in the ''lepton plus jets'' final state in which one of the W bosons from the t{bar t} decay subsequently decays leptonically to an electron or a muon, and the other decays hadronically. The B-tagging technique which utilizes the precision silicon detector tracking is used to enhance the signal for t{bar t} events relative to the background through identification of the bottom quark from its measurable lifetime. The t{bar t} production cross section is measured to be {sigma}{sub t{bar t}} = 4.5 {+-} 1.4(stat) {+-} 0.8(sys) pb.