Download Free Measurement Of The Atmospheric Muon Charge Ratio Using The Minos Near Detector Book in PDF and EPUB Free Download. You can read online Measurement Of The Atmospheric Muon Charge Ratio Using The Minos Near Detector and write the review.

The magnetized MINOS near detector has been collecting charge-separated atmospheric muon events since January 2005. To reduce the systematics due to muon acceptance equal periods of forward and reverse magnetic field data were combined. This has allowed an accurate measurement of the muon charge ratio to be performed with 8.52 days of data. We report a charge ratio of 1.288±0.004(stat.)±0.025(syst.) at a mean surface energy of 110 GeV.
The magnetized MINOS near detector can accurately determine the charge sign of atmospheric muons, this facilitates a measurement of the atmospheric muon charge ratio. To reduce the systematic error associated with geometric bias and acceptance we have combined equal periods of data obtained with opposite magnetic field polarities. We report a charge ratio of 1.2666 ± 0.0015(stat.){sub -0.0088}{sup +0.0096}(syst.) at a mean E{sub {mu},0{sup cos}}([theta]) = 63 GeV. This measurement is consistent with the world average but significantly lower than the earlier observation at the MINOS far detector. This increase is shown to be consistent with the hypothesis that a greater fraction of the observed muons arise from kaon decay within the cosmic ray shower.
The 5.4 kton MINOS far detector has been taking charge-separated cosmic ray muon data since the beginning of August, 2003 at a depth of 2070 m.w.e. in the Soudan Underground Laboratory, Minnesota, USA. The data with both forward and reversed magnetic field running configurations were combined to minimize systematic errors in the determination of the underground muon charge ratio. When averaged, two independent analyses find the charge ratio underground to be N{sub {mu}}+/N{sub {mu}}-=1.374±0.004(stat)-0.010{sup +0.012}(sys). Using the map of the Soudan rock overburden, the muon momenta as measured underground were projected to the corresponding values at the surface in the energy range 1-7 TeV. Within this range of energies at the surface, the MINOS data are consistent with the charge ratio being energy independent at the 2 standard deviation level. When the MINOS results are compared with measurements at lower energies, a clear rise in the charge ratio in the energy range 0.3-1.0 TeV is apparent. A qualitative model shows that the rise is consistent with an increasing contribution of kaon decays to the muon charge ratio.
MINOS is the first large magnetic detector deep underground and is the first to measure the muon charge ratio with high statistics in the region near 1 TeV.[1] An approximate formula for the muon charge ratio can be expressed in terms of [eta]{sub {pi}} = 115 GeV, [eta]{sub K} = 850 GeV and E{sub {mu}}{sup surface}The implications for K production in the atmosphere will be discussed.
We present a measurement of the ratio of positive to negative muon fluxes from cosmic ray interactions in the atmosphere, using data collected by the CMS detector both at ground level and in the underground experimental cavern at the CERN LHC. Muons were detected in the momentum range from 5 GeV/c to 1 TeV/c. The surface flux ratio is measured to be 1.2766 \pm 0.0032(stat.) \pm 0.0032 (syst.), independent of the muon momentum, below 100 GeV/c. This is the most precise measurement to date. At higher momenta the data are consistent with an increase of the charge ratio, in agreement with cosmic ray shower models and compatible with previous measurements by deep-underground experiments.
The charge ratio, R[mu] = N[mu]+/N[mu]-, for cosmogenic multiple-muon events observed at an underground depth of 2070 mwe has been measured using the magnetized MINOS Far Detector. The multiple-muon events, recorded nearly continuously from August 2003 until April 2012, comprise two independent data sets imaged with opposite magnetic field polarities, the comparison of which allows the systematic uncertainties of the measurement to be minimized. The multiple-muon charge ratio is determined to be R[mu] = 1.104±0.006(stat)-0.010+0.009(syst). As a result, this measurement complements previous determinations of single-muon and multiple-muon charge ratios at underground sites and serves to constrain models of cosmic-ray interactions at TeV energies.
ABSTRACT: The ratio of positive to negative charges in the secondary cosmic muon flux is measured at the Compact Muon Solenoid experiment. Muons with momenta between 5 GeV/c and 1 TeV/c are observed in data collected at ground level or 89 m underground; and found to be a constant 1.2766 ± 0.0032(stat.) ± 0.0032(syst.) for momenta below 100 GeV/c, and rising with higher momenta. The fraction of charged pions and kaons in the secondary cosmic flux resulting in positive muon production has been estimated, with f ... + = 0.553±0.005 and fK+ = 0.66±0.06, respectively. The results presented herein are in good agreement with cosmic ray shower models, consistent with previous measurements, and represent the most precise measurement to date for atmospheric muons up to 500 GeV/c. This is also the first physics measurement involving muons at the completed CMS detector.
This book introduces the reader to how fundamental topics in particle physics can be studied with the largest neutrino telescopes currently in operation. Due to their large size, reaching cubic-kilometer volumes, and their wide energy response, these unusual detectors can provide insight on neutrino oscillations, dark matter searches or searches for exotic particles, new neutrino interactions or extra dimensions, among many other topics.Lacking a man-made neutrino 'beam', neutrino telescopes use the copious flux of neutrinos continuously produced by cosmic rays interacting in the Earth's atmosphere, as well as neutrinos from astrophysical origin. They have therefore access to neutrinos of higher energies and much longer baselines than those produced in present accelerators, being able to search for new physics at complementary scales than currently available in particle physics laboratories around the world.Written by carefully chosen experts in the field, the book introduces each topic in a pedagogical way apt not only to professionals, but also to students or the interested reader with a background in physics.
The latest of the 'Lepton Photon' symposium, one of the well-established series of meetings in the high-energy physics community, was successfully organized at the South Campus of Sun Yat-sen University, Guangzhou, China, from August 7-12, 2017, where physicists around the world gathered to discuss the latest advancements in the research field.This proceedings volume of the Lepton Photon 2017 collects contributions by the plenary session speakers and the posters' presenters, which cover the latest results in particle physics, nuclear physics, astrophysics, cosmology, and plans for future facilities.