Download Free Measurement Of Evaporation From Land And Water Surface Book in PDF and EPUB Free Download. You can read online Measurement Of Evaporation From Land And Water Surface and write the review.

General circulation model (GCM) experiments in the late 1970's indicated that the climate is sensitive to variations in evaporation at the land surface. Thus, in the context of climate modeling, it became important to develop techniques which would realistically estimate the evaporation flux on land. Land Surface Evaporation: Measurement and Parameterization discusses strategies for the use of experimental data in developing and testing parameterization schemes of the evaporation flux in GCM's. The book reviews state-of-the-art techniques, such as remote sensing, which measure evaporation fluxes over continental surfaces. It evaluates their relevance with respect to the various spatial and temporal scales of interest. This book will provide researchers in climatology, meteorology, hydrology and water management, and remote sensing with a thorough overview of current research in land surface evaporation. It will also give young scientists insight into surface processes.
Extreme Hydrology and Climate Variability: Monitoring, Modelling, Adaptation and Mitigation is a compilation of contributions by experts from around the world who discuss extreme hydrology topics, from monitoring, to modeling and management. With extreme climatic and hydrologic events becoming so frequent, this book is a critical source, adding knowledge to the science of extreme hydrology. Topics covered include hydrometeorology monitoring, climate variability and trends, hydrological variability and trends, landscape dynamics, droughts, flood processes, and extreme events management, adaptation and mitigation. Each of the book's chapters provide background and theoretical foundations followed by approaches used and results of the applied studies. This book will be highly used by water resource managers and extreme event researchers who are interested in understanding the processes and teleconnectivity of large-scale climate dynamics and extreme events, predictability, simulation and intervention measures. - Presents datasets used and methods followed to support the findings included, allowing readers to follow these steps in their own research - Provides variable methodological approaches, thus giving the reader multiple hydrological modeling information to use in their work - Includes a variety of case studies, thus making the context of the book relatable to everyday working situations for those studying extreme hydrology - Discusses extreme event management, including adaption and mitigation
Urban Climates is the first full synthesis of modern scientific and applied research on urban climates. The book begins with an outline of what constitutes an urban ecosystem. It develops a comprehensive terminology for the subject using scale and surface classification as key constructs. It explains the physical principles governing the creation of distinct urban climates, such as airflow around buildings, the heat island, precipitation modification and air pollution, and it then illustrates how this knowledge can be applied to moderate the undesirable consequences of urban development and help create more sustainable and resilient cities. With urban climate science now a fully-fledged field, this timely book fulfills the need to bring together the disparate parts of climate research on cities into a coherent framework. It is an ideal resource for students and researchers in fields such as climatology, urban hydrology, air quality, environmental engineering and urban design.
Natural and human-induced changes in Earth's interior, land surface, biosphere, atmosphere, and oceans affect all aspects of life. Understanding these changes requires a range of observations acquired from land-, sea-, air-, and space-based platforms. To assist NASA, NOAA, and USGS in developing these tools, the NRC was asked to carry out a "decadal strategy" survey of Earth science and applications from space that would develop the key scientific questions on which to focus Earth and environmental observations in the period 2005-2015 and beyond, and present a prioritized list of space programs, missions, and supporting activities to address these questions. This report presents a vision for the Earth science program; an analysis of the existing Earth Observing System and recommendations to help restore its capabilities; an assessment of and recommendations for new observations and missions for the next decade; an examination of and recommendations for effective application of those observations; and an analysis of how best to sustain that observation and applications system.
This Encyclopedia of Agrophysics will provide up-to-date information on the physical properties and processes affecting the quality of the environment and plant production. It will be a "first-up" volume which will nicely complement the recently published Encyclopedia of Soil Science, (November 2007) which was published in the same series. In a single authoritative volume a collection of about 250 informative articles and ca 400 glossary terms covering all aspects of agrophysics will be presented. The authors will be renowned specialists in various aspects in agrophysics from a wide variety of countries. Agrophysics is important both for research and practical use not only in agriculture, but also in areas like environmental science, land reclamation, food processing etc. Agrophysics is a relatively new interdisciplinary field closely related to Agrochemistry, Agrobiology, Agroclimatology and Agroecology. Nowadays it has been fully accepted as an agricultural and environmental discipline. As such this Encyclopedia volume will be an indispensable working tool for scientists and practitioners from different disciplines, like agriculture, soil science, geosciences, environmental science, geography, and engineering.
MOP 70 is a comprehensive reference to estimating the water quantities needed for irrigation of crops projects based upon the physics of evaporation and evapotranspiration (ET).
The book is a thorough presentation of theoretical and applied aspects of the evaporation and evapotranspiration process supported by data from experimental studies. It is written in a way that the theoretical background of evaporation and evapotranspiration estimation is presented in a simplified manner, comprehensive to most technical readers. The book deals with details of meteorological parameters and monitoring sensors which are needed for estimating evaporation and evapotranspiration. Errors in meteorological parameter measurements are also presented. Estimation errors, strengths, weaknesses and applicability of a wide range of evaporation and evapotranspiration estimation methods are presented along with samples of application to a certain region. Application of newer simpler methods is presented. A new technology, remote sensing application to evaporation and evapotranspiration estimation, is presented. The latest interest in the subject, climate change and evapotranspiration is presented in the last chapter. This book will be beneficial to students, hydrologists, engineers, meteorologists, water managers and others.
A large part of the global population lives in arid lands which have low rainfall and often lack the water required for sustainable population and economic growth. This book presents a comprehensive description of the hydrogeology and hydrologic processes at work in arid lands. It describes the techniques that can be used to assess and manage the water resources of these areas with an emphasis on groundwater resources, including recent advances in hydrologic evaluation and the differences between how aquifer systems behave in arid lands versus more humid areas. Water management techniques are described and summarized to show how a more comprehensive approach to water management is required in these areas, including the need to be aware of cultural sensitivities and conditions unique to many arid regions. The integration of existing resources with the addition of new water sources, such as desalination of brackish water and seawater, along with reusing treated wastewater, will be required to meet future water supply needs. Also, changing climatic conditions will force water management systems to be more robust so that future water supply demands can be met as droughts become more intense and rainfall events become more intense. A range of water management techniques are described and discussed in order to illustrate the methods for integrating these measures within the context of arid lands conditions.
We live on a dynamic Earth shaped by both natural processes and the impacts of humans on their environment. It is in our collective interest to observe and understand our planet, and to predict future behavior to the extent possible, in order to effectively manage resources, successfully respond to threats from natural and human-induced environmental change, and capitalize on the opportunities â€" social, economic, security, and more â€" that such knowledge can bring. By continuously monitoring and exploring Earth, developing a deep understanding of its evolving behavior, and characterizing the processes that shape and reshape the environment in which we live, we not only advance knowledge and basic discovery about our planet, but we further develop the foundation upon which benefits to society are built. Thriving on Our Changing Planet presents prioritized science, applications, and observations, along with related strategic and programmatic guidance, to support the U.S. civil space Earth observation program over the coming decade.