Download Free Measurement Of Charmed Meson Azimuthal Anisotropy In Au Au Collisions At A Center Of Mass Energy Of 200 Gev Per Nucleon Pair At Rhic Book in PDF and EPUB Free Download. You can read online Measurement Of Charmed Meson Azimuthal Anisotropy In Au Au Collisions At A Center Of Mass Energy Of 200 Gev Per Nucleon Pair At Rhic and write the review.

At the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL), Long Island, NY, the main goal of research into heavy-ion collisions has been to understand Quantum Chromo Dynamics (QCD) in conditions of extreme temperature and energy density. At ordinary temperatures, the quarks and gluons are confined within particles like protons and neutrons, but at very high temperatures and densities, a new deconfined phase of quarks and gluons is created. This new phase is known as Quark Gluon Plasma (QGP).Quarks with the quantum numbers "charm" and "bottom" are relatively massive and are produced only rarely, and this category is called heavy flavor. Heavy-flavor measurements deepen our understanding of the properties and nature of the excited QGP state. Heavy-flavor particles are unique probes for studies of the hot and dense QGP medium created in high-energy collisions, as they are produced early in the evolution of the collision.STAR (Solenoidal Tracker At RHIC) is now the last operational detector at the RHIC facility, and was constructed and is operated by a large international collaboration. The STAR collaboration is composed of 68 institutions from 14 countries, with a total of 743 collaborators. In 2014, STAR employed a new silicon pixel technology detector named the Heavy Flavor Tracker (HFT). The HFT has separate layers of silicon to guide tracks reconstructed in the main tracking detector of STAR (the Time Projection Chamber) down to a spatial resolution of around 30 [mu]m in the region near the center of STAR where the collisions occur, which allows particles with very short lifetimes (notably heavy flavor particles) to be identified.In this dissertation, I use the HFT to measure particles with the charm quantum number. This work also involves using a pair of calorimeter detectors at a polar angle of zero degrees to estimate the azimuthal angle of the reaction plane in each collision. About 2.2 billion collisions are in the dataset being studied. These measurements allow the azimuthal anisotropy (flow) of charmed particles to be studied. The results are compared to similar studies involving light quarks and the predictions of several theoretical models. My results show a surprisingly large first Fourier harmonic in the anisotropy for particles with charm compared with particles with lighter flavors (strange, up, down). Specifically, the signal for charm is about 30 times larger, and no model comes anywhere close to predicting this pattern.
Excited nuclear matter at high temperature and density results in the creation of a new state of matter called Quark Gluon Plasma (QGP). It is believed that the Universe was in the QGP state a few millionths of a second after the Big Bang. A QGP can be experimentally created for a very brief time by colliding heavy nuclei, such as gold, at ultra-relativistic energies. The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory consists of two circular rings, 3.8 km in circumference, which can accelerate heavy nuclei in two counter-rotating beams to nearly the speed of light (up to 100 GeV per beam). STAR (Solenoidal Tracker At RHIC) is one of two large detectors at the RHIC facility, and was constructed and is operated by a large international collaboration made up of more than 500 scientists from 56 institutions in 12 countries. STAR has been taking data from heavy ion collisions since the year 2000. An important component of the physics effort of the STAR collaboration is the Beam Energy Scan (BES), designed to study the properties of the Quantum Chromodynamics (QCD) phase diagram in the regions where a first-order phase transition and a critical point may exist. Phase-I of the BES program took data in 2010, 2011 and 2014, using Au+Au collisions at a center-of-mass energy per nucleon pair of 7.7, 11.5, 14.5, 19.6, 27 and 39 GeV. It is by now considered a well-established fact that the QGP phase exists. However, all evidence so far indicates that there is a smooth crossover when normal hadronic matter becomes QGP and vice versa in collisions at the top energy of RHIC (and likewise at the Large Hadron Collider at the CERN laboratory in Switzerland). At these very high energies, the net density of baryons like nucleons is quite low, since there are almost equal abundances of baryons and antibaryons. It is known that net-baryon compression increases as the beam energy is lowered below a few tens of GeV. Of course, if the beam energy is too low, then the QGP phase cannot be produced at all, so it has been proposed that there is an optimum beam energy, so far unknown, where phenomena like a first-order phase transition and a critical point might be observed. On the other hand, there also exists the possibility that a smooth crossover to QGP occurs throughout the applicable region of the QCD phase diagram. Experiments are needed to resolve these questions. In this dissertation, I focus on one of the main goals of the BES program, which is to search for a possible first-order phase transition from hadronic matter to QGP and back again, using measurements of azimuthal anisotropy. The momentum-space azimuthal anisotropy of the final-state particles from collisions can be expressed in Fourier harmonics. The first harmonic coefficient is called directed flow, and reflects the strength of the collective sideward motion, relative to the beam direction, of the particles. Models tell us that directed flow is imparted during the very early stage of a collision and is not much altered during subsequent stages of the collision. Thus directed flow can provide information about the early stages when the QGP phase exists for a short time. A subset of hydrodynamic and nuclear transport model calculations with the assumption of a first-order phase transition show a prominent dip in the directed flow versus beam energy. I present directed flow and its slope with respect to rapidity, for identified particle types, namely lambda, anti-lambda and kaons as a function of beam energy for central, intermediate and peripheral collisions. The production threshold of neutral strange particles requires them to be created earlier, and these particles have relatively long mean free path. Thus these particles may probe the QGP at earlier times. In addition, new Lambda measurements can provide more insight about baryon number transported to the midrapidity region by stopping process of the nuclear collision. It is noteworthy that net-baryon density (equivalent to baryon chemical potential) depends not only on beam energy but also on collision centrality. The centrality dependence of directed flow and its slope are also studied for all BES energies for nine identified particle types, lambda, anti-lambda, neutral kaons, charged kaons, protons, anti-protons, and charged pions. These detailed results for many particle species, where both centrality and beam energy are varied over a wide range, strongly constrain models. The measurements summarized above pave the way for a new round of model refinements and subsequent comparisons with data. If the latter does not lead to a clear conclusion, the BES Phase-II program will take data in 2019 and 2020 with an upgraded STAR detector with wider acceptance, greatly improved statistics, and will extend measurements to new energy points.
We report on measurements of dielectron (ee−) production in Au+Au collisions at a center-of-mass energy of 200 GeV per nucleon-nucleon pair using the STAR detector at RHIC. Systematic measurements of the dielectron yield as a function of transverse momentum (pT) and collision centrality show an enhancement compared to a cocktail simulation of hadronic sources in the low invariant-mass region (Mee
Quantum Chromodynamics (QCD), the theory of the strong interaction between quarks and gluons, predicts that at extreme conditions of high temperature and/or density, quarks and gluons are no longer confined within individual hadrons. This new deconfined state of quarks and gluons is called Quark-Gluon Plasma (QGP). The Universe was in this QGP state a few microseconds after the Big Bang. The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) on Long Island, NY was built to create and study the properties of QGP.Due to their heavy masses, quarks with heavy flavor (charm and bottom) are mainly created during the early, energetic stages of the collisions. Heavy flavor is considered to be a unique probe for QGP studies, since it propagates through all phases of a collision, and is affected by the hot and dense medium throughout its evolution. Initial studies, via indirect reconstruction of heavy flavor using their decay electrons, indicated a much higher energy loss by these quarks compared to model predictions, with a magnitude comparable to that of light quarks. Mesons such as D0 could provide information about the interaction of heavy quarks with the surrounding medium through measurements such as elliptic flow. Such data help constrain the transport parameters of the QGP medium and reveal its degree of thermalization.Because heavy hadrons have a low production yield and short lifetime (e.g. ct = 120μm for D0), it is very challenging to obtain accurate measurements of open heavy flavor in heavy-ion collisions, especially since the collisions also produce large quantities of light-flavor particles. Also due to their short lifetime, it is difficult to distinguish heavy-flavor decay vertices from the primary collision vertex; one needs a very high precision vertex detector in order to separate and reconstruct the decay of the heavy flavor particles in the presence of thousands of other particles produced in each collision.The STAR collaboration built a new micro-vertex detector and installed it in the experiment in 2014. This state-of-the-art silicon pixel technology is named the Heavy Flavor Tracker (HFT). The HFT was designed in order to perform direct topological reconstruction of the weak decay products from hadrons that include a heavy quark. The HFT consists of four layers of silicon, and it improves the track pointing resolution of the STAR experiment from a few mm to around 30 ℗æm for charged pions at a momentum of 1 GeV/c.In this dissertation, I focus on one of the main goals of the HFT detector, which is to study the elliptic flow v2 (a type of azimuthal anisotropy) for D0 mesons in Au+Au collisions at vsNN = 200 GeV. My analysis is based on the 2014 data set (about 1.2 billion collisions covering all impact parameters) that include data from the HFT detector. There are two new and unique analysis elements used in this dissertation. First, I performed the analysis using a Kalman filter algorithm to reconstruct the charmed-meson candidates. The standard reconstruction is via a simple helix-swim method. The advantage of using the Kalman algorithm is in the use of the full error matrix of each track in the vertex estimation and reconstruction of the properties of the heavy-flavor parent particle. Second, I also used the Tool for Multivariate Analysis (TMVA), a ROOT-environment tool, to its full potential for signal significance optimization, instead of the previous approach based on a set of fixed cuts for separating signal from background.This dissertation presents the elliptic component (v2) of azimuthal anisotropy of D0 mesons as a function of transverse momentum, pT . The centrality (impact parameter) dependence of D0 v2(pT) is also studied. Results are compared with similar studies involving light quarks, and with the predictions of several theoretical models.
This book gives an introduction to main ideas used in the physics of ultra-relativistic heavy-ion collisions. The links between basic theoretical concepts (discussed gradually from the elementary to more advanced level) and the results of experiments are outlined, so that experimentalists may learn more about the foundations of the models used by them to fit and interpret the data, while theoreticians may learn more about how different theoretical ideas are used in practical applications. The main task of the book is to collect the available information and establish a uniform picture of ultra-relativistic heavy-ion collisions. The properties of hot and dense matter implied by this picture are discussed comprehensively. In particular, the issues concerning the formation of the quark-gluon plasma in present and future heavy-ion experiments are addressed.