Download Free Measurement And Manipulation In Microchannels Using Ac Electric Fields Book in PDF and EPUB Free Download. You can read online Measurement And Manipulation In Microchannels Using Ac Electric Fields and write the review.

In this work, alternating current (AC) electric fields are used in combination with microfluidics to manipulate micro- and nano-sized particles and to probe the electrical characteristics of microchannels with potential application in portable diagnostics. This work was carried out as contribution to a collaborative research project involving researchers from chemistry, electrical engineering and mechanical engineering at the University of Victoria, in addition to researchers from the BC Cancer Deeley Research Centre. The manipulation of particles or cells within a microchannel flow is central to many microfluidic applications. In the context of diagnostics that utilize antibodies in serum, for example, the removal of cells from the sample is often required. Continuous removal of particles and cells is particularly critical in the case of flow-through nanohole array based sensing, as these serve as fine filters and thus are very susceptible to clogging. In this work, chevron shaped, interdigitated electrodes are used to produce dielectrophoretic forces in combination with hydrodynamic drag to displace particles from their corresponding streamlines to the center of a microchannel. Analytical and finite element modeling are used to provide insight into the focusing mechanism. Dielectrophoresis (DEP) also offers opportunities for particle manipulation in combination with porous media. In this preliminary work, the viability of dielectrophoresis tuned nano-particle transport in a nanohole array is investigated through analytical and numerical modeling. The effects of hydrodynamic drag and Brownian motion are considered in the context of applied voltage, flow rate and particle size. Preliminary flow-through tests are performed experimentally as proof of concept. The final contribution focuses primarily on external infrastructure that enables AC microfluidic diagnostics, with particular relevance to portable device applications and so-called point-of-care devices. Cell ph.
In this work, alternating current (AC) electric fields are used in combination with microfluidics to manipulate micro- and nano-sized particles and to probe the electrical characteristics of microchannels with potential application in portable diagnostics. This work was carried out as contribution to a collaborative research project involving researchers from chemistry, electrical engineering and mechanical engineering at the University of Victoria, in addition to researchers from the BC Cancer Deeley Research Centre. The manipulation of particles or cells within a microchannel flow is central to many microfluidic applications. In the context of diagnostics that utilize antibodies in serum, for example, the removal of cells from the sample is often required. Continuous removal of particles and cells is particularly critical in the case of flow-through nanohole array based sensing, as these serve as fine filters and thus are very susceptible to clogging. In this work, chevron shaped, interdigitated electrodes are used to produce dielectrophoretic forces in combination with hydrodynamic drag to displace particles from their corresponding streamlines to the center of a microchannel. Analytical and finite element modeling are used to provide insight into the focusing mechanism. Dielectrophoresis (DEP) also offers opportunities for particle manipulation in combination with porous media. In this preliminary work, the viability of dielectrophoresis tuned nano-particle transport in a nanohole array is investigated through analytical and numerical modeling. The effects of hydrodynamic drag and Brownian motion are considered in the context of applied voltage, flow rate and particle size. Preliminary flow-through tests are performed experimentally as proof of concept. The final contribution focuses primarily on external infrastructure that enables AC microfluidic diagnostics, with particular relevance to portable device applications and so-called point-of-care devices. Cell phones, and mp3 players are examples of consumer electronics that are easily operated and are ubiquitous in both developed and developing regions. Audio output (play) and input (record) signals are voltage-based and contain frequency and amplitude information. Audio signal based concentration, conductivity, flow rate, and particle detection measurements are demonstrated in a microfluidic platform.
Robotics for Cell Manipulation and Characterization provides fundamental principles underpinning robotic cell manipulation and characterization, state-of-the-art technical advances in micro/nano robotics, new discoveries of cell biology enabled by robotic systems, and their applications in clinical diagnosis and treatment. This book covers several areas, including robotics, control, computer vision, biomedical engineering and life sciences using understandable figures and tables to enhance readers’ comprehension and pinpoint challenges and opportunities for biological and biomedical research. Focuses on, and comprehensively covers, robotics for cell manipulation and characterization Highlights recent advances in cell biology and disease treatment enabled by robotic cell manipulation and characterization Provides insightful outlooks on future challenges and opportunities
This book delves into the recent developments in the microscale and microfluidic technologies that allow manipulation at the single and cell aggregate level. Expert authors review the dominant mechanisms that manipulate and sort biological structures, making this a state-of-the-art overview of conventional cell sorting techniques, the principles of microfluidics, and of microfluidic devices. All chapters highlight the benefits and drawbacks of each technique they discuss, which include magnetic, electrical, optical, acoustic, gravity/sedimentation, inertial, deformability, and aqueous two-phase systems as the dominant mechanisms utilized by microfluidic devices to handle biological samples. Each chapter explains the physics of the mechanism at work, and reviews common geometries and devices to help readers decide the type of style of device required for various applications. This book is appropriate for graduate-level biomedical engineering and analytical chemistry students, as well as engineers and scientists working in the biotechnology industry.
Now in its Third Edition, the Artech House bestseller, Fundamentals and Applications of Microfluidics, provides engineers and students with the most complete and current coverage of this cutting-edge field. This revised and expanded edition provides updated discussions throughout and features critical new material on microfluidic power sources, sensors, cell separation, organ-on-chip and drug delivery systems, 3D culture devices, droplet-based chemical synthesis, paper-based microfluidics for point-of-care, ion concentration polarization, micro-optofluidics and micro-magnetofluidics. The book shows how to take advantage of the performance benefits of microfluidics and serves as an instant reference for state-of-the-art microfluidics technology and applications. Readers find discussions on a wide range of applications, including fluid control devices, gas and fluid measurement devices, medical testing equipment, and implantable drug pumps. Professionals get practical guidance in choosing the best fabrication and enabling technology for a specific microfluidic application, and learn how to design a microfluidic device. Moreover, engineers get simple calculations, ready-to-use data tables, and rules of thumb that help them make design decisions and determine device characteristics quickly.
This book is a printed edition of the Special Issue "Micro/Nano-Chip Electrokinetics" that was published in Micromachines
Electrokinetic Phenomena emphasizes the impact of methods such as capillary zone electrophoresis, capillary electrochromatography, and capillary gel electrophoresis on the analysis of biomolecules. This reference reveals the electrokinetic phenomena that underlie high-performance electro-based analytical tools and vividly depicts how electro