Download Free Means And Their Inequalities Book in PDF and EPUB Free Download. You can read online Means And Their Inequalities and write the review.

There seems to be two types of books on inequalities. On the one hand there are treatises that attempt to cover all or most aspects of the subject, and where an attempt is made to give all results in their best possible form, together with either a full proof or a sketch of the proof together with references to where a full proof can be found. Such books, aimed at the professional pure and applied mathematician, are rare. The first such, that brought some order to this untidy field, is the classical "Inequalities" of Hardy, Littlewood & P6lya, published in 1934. Important as this outstanding work was and still is, it made no attempt at completeness; rather it consisted of the total knowledge of three front rank mathematicians in a field in which each had made fundamental contributions. Extensive as this combined knowledge was there were inevitably certain lacunre; some important results, such as Steffensen's inequality, were not mentioned at all; the works of certain schools of mathematicians were omitted, and many important ideas were not developed, appearing as exercises at the ends of chapters. The later book "Inequalities" by Beckenbach & Bellman, published in 1961, repairs many of these omissions. However this last book is far from a complete coverage of the field, either in depth or scope.
Approach your problems from the right end It isn't !hat they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal 0/ Fa/her 'The Hermit Oad in Crane Feathers' in R. Brown 'The point of a Pin'. van GuJik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fie1ds does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "complete1y integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing c1assification schemes. They draw upon wide1y different sections of mathematics.
This work is about inequalities which play an important role in mathematical Olympiads. It contains 175 solved problems in the form of exercises and, in addition, 310 solved problems. The book also covers the theoretical background of the most important theorems and techniques required for solving inequalities. It is written for all middle and high-school students, as well as for graduate and undergraduate students. School teachers and trainers for mathematical competitions will also gain benefit from this book.
This classic of the mathematical literature forms a comprehensive study of the inequalities used throughout mathematics. First published in 1934, it presents clearly and lucidly both the statement and proof of all the standard inequalities of analysis. The authors were well-known for their powers of exposition and made this subject accessible to a wide audience of mathematicians.
This volume provides a comprehensive, up-to-date survey of inequalities that involve a relationship between a function and its derivatives or integrals. The book is divided into 18 chapters, some of which are devoted to specific inequalities such as those of Kolmogorov-Landau, Wirtinger, Hardy, Carlson, Hilbert, Caplygin, Lyapunov, Gronwell and others. Over 800 references to the literature are cited; proofs are given when these provide insight into the general methods involved; and applications, especially to the theory of differential equations, are mentioned when appropriate. This volume will interest all those whose work involves differential and integral equations. It can also be recommended as a supplementary text.
This book’s first edition has been widely cited by researchers in diverse fields. The following are excerpts from reviews. “Inequalities: Theory of Majorization and its Applications” merits strong praise. It is innovative, coherent, well written and, most importantly, a pleasure to read. ... This work is a valuable resource!” (Mathematical Reviews). “The authors ... present an extremely rich collection of inequalities in a remarkably coherent and unified approach. The book is a major work on inequalities, rich in content and original in organization.” (Siam Review). “The appearance of ... Inequalities in 1979 had a great impact on the mathematical sciences. By showing how a single concept unified a staggering amount of material from widely diverse disciplines–probability, geometry, statistics, operations research, etc.–this work was a revelation to those of us who had been trying to make sense of his own corner of this material.” (Linear Algebra and its Applications). This greatly expanded new edition includes recent research on stochastic, multivariate and group majorization, Lorenz order, and applications in physics and chemistry, in economics and political science, in matrix inequalities, and in probability and statistics. The reference list has almost doubled.
The literature on inequalities is vast-in recent years the number of papers as well as the number of journals devoted to the subject have increased dramatically. At best, locating a particular inequality within the literature can be a cumbersome task. A Dictionary of Inequalities ends the dilemma of where to turn to find a result, a related inequality, or the references to the information you need. It provides a concise, alphabetical listing of each inequality-by its common name or its subject-with a short statement of the result, some comments, references to related inequalities, and a list of sources for further information. The author uses only the most elementary of mathematical terminology and does not offer proofs, thus making an interest in inequalities the only prerequisite for using the text. The author focuses on intuitive, physical forms of inequalities rather than their most general versions, and retains the beauty and importance of original versions rather than listing their later, abstract forms. He presents each in its simplest form with other renditions, such as for complex numbers and vectors, as extensions or under different headings. He has kept the book to a more manageable size by omitting inequalities in areas-such as elementary geometric and trigonometric inequalities-rarely used outside their fields. The end result is a current, concise, reference that puts the essential results on inequalities within easy reach. A Dictionary of Inequalities carries the beauty and attraction of the best and most successful dictionaries: on looking up a given item, the reader is likely to be intrigued and led by interest to others.
The noted economist and philosopher Amartya Sen argues that the dictum “all people are created equal” serves largely to deflect attention from the fact that we differ in age, gender, talents, and physical abilities as well as in material advantages and social background. He argues for concentrating on higher and more basic values: individual capabilities and freedom to achieve objectives. By concentrating on the equity and efficiency of social arrangements in promoting freedoms and capabilities of individuals, Sen adds an important new angle to arguments about such vital issues as gender inequalities, welfare policies, affirmative action, and public provision of health care and education.
Mathematical analysis is largely a systematic study and exploration of inequalities — but for students the study of inequalities often remains a foreign country, difficult of access. This book is a passport to that country, offering a background on inequalities that will prepare undergraduates (and even high school students) to cope with the concepts of continuity, derivative, and integral. Beginning with explanations of the algebra of inequalities and conditional inequalities, the text introduces a pair of ancient theorems and their applications. Explorations of inequalities and calculus cover the number e, examples from the calculus, and approximations by polynomials. The final sections present modern theorems, including Bernstein's proof of the Weierstrass approximation theorem and the Cauchy, Bunyakovskii, Hölder, and Minkowski inequalities. Numerous figures, problems, and examples appear throughout the book, offering students an excellent foundation for further studies of calculus.
This book is a collection of original research and survey articles on mathematical inequalities and their numerous applications in diverse areas of mathematics and engineering. It includes chapters on convexity and related concepts; inequalities for mean values, sums, functions, operators, functionals, integrals and their applications in various branches of mathematics and related sciences; fractional integral inequalities; and weighted type integral inequalities. It also presents their wide applications in biomathematics, boundary value problems, mechanics, queuing models, scattering, and geomechanics in a concise, but easily understandable way that makes the further ramifications and future directions clear. The broad scope and high quality of the contributions make this book highly attractive for graduates, postgraduates and researchers. All the contributing authors are leading international academics, scientists, researchers and scholars.