Download Free Maximum Likelihood Estimation For Stochastic Differential Equations Using Sequential Kriging Based Optimization Book in PDF and EPUB Free Download. You can read online Maximum Likelihood Estimation For Stochastic Differential Equations Using Sequential Kriging Based Optimization and write the review.

Stochastic differential equations (SDEs) are used as statistical models in many disciplines. However, intractable likelihood functions for SDEs make inference challenging, and we need to resort to simulation-based techniques to estimate and maximize the likelihood function. While sequential Monte Carlo methods have allowed for the accurate evaluation of likelihoods at fixed parameter values, there is still a question of how to find the maximum likelihood estimate. In this dissertation we propose an efficient Gaussian-process-based method for exploring the parameter space using estimates of the likelihood from a sequential Monte Carlo sampler. Our method accounts for the inherent Monte Carlo variability of the estimated likelihood, and does not require knowledge of gradients. The procedure adds potential parameter values by maximizing the so-called expected improvement, leveraging the fact that the likelihood function is assumed to be smooth. Our simulations demonstrate that our method has significant computational and efficiency gains over existing grid- and gradient-based techniques. Our method is applied to modeling stock prices over the past ten years and compared to the most commonly used model.
Parameter estimation in stochastic differential equations and stochastic partial differential equations is the science, art and technology of modeling complex phenomena. The subject has attracted researchers from several areas of mathematics. This volume presents the estimation of the unknown parameters in the corresponding continuous models based on continuous and discrete observations and examines extensively maximum likelihood, minimum contrast and Bayesian methods.
This paper derives stochastic differential equations for recursive maximum likelihood estimates for the joint filtering parameter estimation problem. Keywords: Maximum likelihood estimates; Stochastic differential equation; Hamilton Jacobi equation; Nonlinear filtering; Reprints.
The 10th International Symposium on Process Systems Engineering, PSE'09, will be held in Salvador-Bahia, Brazil on August 16-20, 2009. The special focus of PSE 2009 is Sustainability, Energy and Engineering. PSE 2009 is the tenth in the triennial series of international symposia on process systems engineering initiated in 1982. The meeting is brings together the worldwide PSE community of researchers and practitioners who are involved in the creation and application of computing-based methodologies for planning, design, operation, control and maintenance of chemical and petrochemical process industries. PSE'09 will look at how the PSE methods and tools can support sustainable resource systems and emerging technologies in the areas of green engineering: environmentally conscious design of industrial processes. PSE methods and tools support: - sustainable resource systems - emerging technologies in the areas of green engineering - environmentally conscious design of industrial processes
A method for estimating the parameters of stochastic differential equations (SDEs) by simulated maximum likelihood is presented. This method is feasible whenever the underlying SDE is a Markov process. Estimates are compared to those generated by indirect inference, discrete and exact maximum likelihood. The technique is illustrated with reference to a one-factor model of the term structure of interest rates using 3-month US Treasury Bill data.