Download Free Max Linear Systems Book in PDF and EPUB Free Download. You can read online Max Linear Systems and write the review.

Recent years have seen a significant rise of interest in max-linear theory and techniques. Specialised international conferences and seminars or special sessions devoted to max-algebra have been organised. This book aims to provide a first detailed and self-contained account of linear-algebraic aspects of max-algebra for general (that is both irreducible and reducible) matrices. Among the main features of the book is the presentation of the fundamental max-algebraic theory (Chapters 1-4), often scattered in research articles, reports and theses, in one place in a comprehensive and unified form. This presentation is made with all proofs and in full generality (that is for both irreducible and reducible matrices). Another feature is the presence of advanced material (Chapters 5-10), most of which has not appeared in a book before and in many cases has not been published at all. Intended for a wide-ranging readership, this book will be useful for anyone with basic mathematical knowledge (including undergraduate students) who wish to learn fundamental max-algebraic ideas and techniques. It will also be useful for researchers working in tropical geometry or idempotent analysis.
Mathematics of Computing -- General.
Subspace Identification for Linear Systems focuses on the theory, implementation and applications of subspace identification algorithms for linear time-invariant finite- dimensional dynamical systems. These algorithms allow for a fast, straightforward and accurate determination of linear multivariable models from measured input-output data. The theory of subspace identification algorithms is presented in detail. Several chapters are devoted to deterministic, stochastic and combined deterministic-stochastic subspace identification algorithms. For each case, the geometric properties are stated in a main 'subspace' Theorem. Relations to existing algorithms and literature are explored, as are the interconnections between different subspace algorithms. The subspace identification theory is linked to the theory of frequency weighted model reduction, which leads to new interpretations and insights. The implementation of subspace identification algorithms is discussed in terms of the robust and computationally efficient RQ and singular value decompositions, which are well-established algorithms from numerical linear algebra. The algorithms are implemented in combination with a whole set of classical identification algorithms, processing and validation tools in Xmath's ISID, a commercially available graphical user interface toolbox. The basic subspace algorithms in the book are also implemented in a set of Matlab files accompanying the book. An application of ISID to an industrial glass tube manufacturing process is presented in detail, illustrating the power and user-friendliness of the subspace identification algorithms and of their implementation in ISID. The identified model allows for an optimal control of the process, leading to a significant enhancement of the production quality. The applicability of subspace identification algorithms in industry is further illustrated with the application of the Matlab files to ten practical problems. Since all necessary data and Matlab files are included, the reader can easily step through these applications, and thus get more insight in the algorithms. Subspace Identification for Linear Systems is an important reference for all researchers in system theory, control theory, signal processing, automization, mechatronics, chemical, electrical, mechanical and aeronautical engineering.
This book presents high-quality original contributions on positive systems, including those with positivity in compartmental switched systems, Markovian jump systems, Boolean networks, interval observer design, fault detection, and delay systems. It comprises a selection of the best papers from POSTA 2018, the 6th International Conference on Positive Systems, which was held in Hangzhou, China, in August 2018. The POSTA conference series represents a targeted response to the growing need for research that reports on and critically discusses a wide range of topics concerning the theory and applications of positive systems. The book offers valuable insights for researchers in applied mathematics, control theory and their applications.
This volume contains the papers selected for presentation at the 10th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, RSFDGrC 2005, organized at the University of Regina, August 31st–September 3rd, 2005.
This volume contains the papers selected for presentation at the 10th Int- national Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, RSFDGrC 2005, organized at the University of Regina, August 31st–September 3rd, 2005. This conference followed in the footsteps of inter- tional events devoted to the subject of rough sets, held so far in Canada, China, Japan,Poland,Sweden, and the USA. RSFDGrC achievedthe status of biennial international conference, starting from 2003 in Chongqing, China. The theory of rough sets, proposed by Zdzis law Pawlak in 1982, is a model of approximate reasoning. The main idea is based on indiscernibility relations that describe indistinguishability of objects. Concepts are represented by - proximations. In applications, rough set methodology focuses on approximate representation of knowledge derivable from data. It leads to signi?cant results in many areas such as ?nance, industry, multimedia, and medicine. The RSFDGrC conferences put an emphasis on connections between rough sets and fuzzy sets, granularcomputing, and knowledge discoveryand data m- ing, both at the level of theoretical foundations and real-life applications. In the case of this event, additional e?ort was made to establish a linkage towards a broader range of applications. We achieved it by including in the conference program the workshops on bioinformatics, security engineering, and embedded systems, as well as tutorials and sessions related to other application areas.
This volume contains the proceedings of the International Workshop on Tropical and Idempotent Mathematics, held at the Independent University of Moscow, Russia, from August 26-31, 2012. The main purpose of the conference was to bring together and unite researchers and specialists in various areas of tropical and idempotent mathematics and applications. This volume contains articles on algebraic foundations of tropical mathematics as well as articles on applications of tropical mathematics in various fields as diverse as economics, electroenergetic networks, chemical reactions, representation theory, and foundations of classical thermodynamics. This volume is intended for graduate students and researchers interested in tropical and idempotent mathematics or in their applications in other areas of mathematics and in technical sciences.
This book constitutes the refereed proceedings of the 17th International Conference on Formal Modeling and Analysis of Timed Systems, FORMATS 2019, held in Amsterdam, The Netherlands, in August 2019. The 15 full papers and 2 short papers presented in this volume were carefully reviewed and selected from 42 submissions. The papers are organized in the following topical sections: special session on data-driven and stochastic approaches to real-time, including monitoring and Big Data; timed systems; linear and non-linear systems; timed automata; special session on timed systems and probabilities.