Download Free Matrix Positivity Book in PDF and EPUB Free Download. You can read online Matrix Positivity and write the review.

This comprehensive reference, for mathematical, engineering and social scientists, covers matrix positivity classes and their applications.
Matrices and kernels with positivity structures, and the question of entrywise functions preserving them, have been studied throughout the 20th century, attracting recent interest in connection to high-dimensional covariance estimation. This is the first book to systematically develop the theoretical foundations of the entrywise calculus, focusing on entrywise operations - or transforms - of matrices and kernels with additional structure, which preserve positive semidefiniteness. Designed as an introduction for students, it presents an in-depth and comprehensive view of the subject, from early results to recent progress. Topics include: structural results about, and classifying the preservers of positive semidefiniteness and other Loewner properties (monotonicity, convexity, super-additivity); historical connections to metric geometry; classical connections to moment problems; and recent connections to combinatorics and Schur polynomials. Based on the author's course, the book is structured for use as lecture notes, including exercises for students, yet can also function as a comprehensive reference text for experts.
This book contains both expository articles and original research in the areas of function theory and operator theory. The contributions include extended versions of some of the lectures by invited speakers at the conference in honor of the memory of Serguei Shimorin at the Mittag-Leffler Institute in the summer of 2018. The book is intended for all researchers in the fields of function theory, operator theory and complex analysis in one or several variables. The expository articles reflecting the current status of several well-established and very dynamical areas of research will be accessible and useful to advanced graduate students and young researchers in pure and applied mathematics, and also to engineers and physicists using complex analysis methods in their investigations.
This volume contains the proceedings of the Conference on Complex Analysis and Spectral Theory, in celebration of Thomas Ransford's 60th birthday, held from May 21–25, 2018, at Laval University, Québec, Canada. Spectral theory is the branch of mathematics devoted to the study of matrices and their eigenvalues, as well as their infinite-dimensional counterparts, linear operators and their spectra. Spectral theory is ubiquitous in science and engineering because so many physical phenomena, being essentially linear in nature, can be modelled using linear operators. On the other hand, complex analysis is the calculus of functions of a complex variable. They are widely used in mathematics, physics, and in engineering. Both topics are related to numerous other domains in mathematics as well as other branches of science and engineering. The list includes, but is not restricted to, analytical mechanics, physics, astronomy (celestial mechanics), geology (weather modeling), chemistry (reaction rates), biology, population modeling, economics (stock trends, interest rates and the market equilibrium price changes). There are many other connections, and in recent years there has been a tremendous amount of work on reproducing kernel Hilbert spaces of analytic functions, on the operators acting on them, as well as on applications in physics and engineering, which arise from pure topics like interpolation and sampling. Many of these connections are discussed in articles included in this book.
A real matrix is positive semidefinite if it can be decomposed as A = BBOC . In some applications the matrix B has to be elementwise nonnegative. If such a matrix exists, A is called completely positive. The smallest number of columns of a nonnegative matrix B such that A = BBOC is known as the cp- rank of A . This invaluable book focuses on necessary conditions and sufficient conditions for complete positivity, as well as bounds for the cp- rank. The methods are combinatorial, geometric and algebraic. The required background on nonnegative matrices, cones, graphs and Schur complements is outlined. Contents: Preliminaries: Matrix Theoretic Background; Positive Semidefinite Matrices; Nonnegative Matrices and M -Matrices; Schur Complements; Graphs; Convex Cones; The PSD Completion Problem; Complete Positivity: Definition and Basic Properties; Cones of Completely Positive Matrices; Small Matrices; Complete Positivity and the Comparison Matrix; Completely Positive Graphs; Completely Positive Matrices Whose Graphs are Not Completely Positive; Square Factorizations; Functions of Completely Positive Matrices; The CP Completion Problem; CP Rank: Definition and Basic Results; Completely Positive Matrices of a Given Rank; Completely Positive Matrices of a Given Order; When is the CP-Rank Equal to the Rank?. Readership: Upper level undergraduates, graduate students, academics and researchers interested in matrix theory."
This book represents the first synthesis of the considerable body of new research into positive definite matrices. These matrices play the same role in noncommutative analysis as positive real numbers do in classical analysis. They have theoretical and computational uses across a broad spectrum of disciplines, including calculus, electrical engineering, statistics, physics, numerical analysis, quantum information theory, and geometry. Through detailed explanations and an authoritative and inspiring writing style, Rajendra Bhatia carefully develops general techniques that have wide applications in the study of such matrices. Bhatia introduces several key topics in functional analysis, operator theory, harmonic analysis, and differential geometry--all built around the central theme of positive definite matrices. He discusses positive and completely positive linear maps, and presents major theorems with simple and direct proofs. He examines matrix means and their applications, and shows how to use positive definite functions to derive operator inequalities that he and others proved in recent years. He guides the reader through the differential geometry of the manifold of positive definite matrices, and explains recent work on the geometric mean of several matrices. Positive Definite Matrices is an informative and useful reference book for mathematicians and other researchers and practitioners. The numerous exercises and notes at the end of each chapter also make it the ideal textbook for graduate-level courses.
Each chapter in this book describes relevant background theory followed by specialized results. Hundreds of identities, inequalities, and matrix facts are stated clearly with cross references, citations to the literature, and illuminating remarks.
A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.
This account of totally positive matrices treats their central properties with full proofs and a complete bibliography.
This volume concisely presents fundamental ideas, results, and techniques in linear algebra and mainly matrix theory. Each chapter focuses on the results, techniques, and methods that are beautiful, interesting, and representative, followed by carefully selected problems. For many theorems several different proofs are given. The only prerequisites are a decent background in elementary linear algebra and calculus.