Download Free Matrix Algorithms Book in PDF and EPUB Free Download. You can read online Matrix Algorithms and write the review.

This volume is the first in a self-contained five-volume series devoted to matrix algorithms. It focuses on the computation of matrix decompositions--that is, the factorization of matrices into products of similar ones. The first two chapters provide the required background from mathematics and computer science needed to work effectively in matrix computations. The remaining chapters are devoted to the LU and QR decompositions--their computation and applications. The singular value decomposition is also treated, although algorithms for its computation will appear in the second volume of the series. The present volume contains 65 algorithms formally presented in pseudocode. Other volumes in the series will treat eigensystems, iterative methods, sparse matrices, and structured problems. The series is aimed at the nonspecialist who needs more than black-box proficiency with matrix computations. To give the series focus, the emphasis is on algorithms, their derivation, and their analysis. The reader is assumed to have a knowledge of elementary analysis and linear algebra and a reasonable amount of programming experience, typically that of the beginning graduate engineer or the undergraduate in an honors program. Strictly speaking, the individual volumes are not textbooks, although they are intended to teach, the guiding principle being that if something is worth explaining, it is worth explaining fully. This has necessarily restricted the scope of the series, but the selection of topics should give the reader a sound basis for further study.
This volume is the first in a self-contained five-volume series devoted to matrix algorithms. It focuses on the computation of matrix decompositions--that is, the factorization of matrices into products of similar ones. The first two chapters provide the required background from mathematics and computer science needed to work effectively in matrix computations. The remaining chapters are devoted to the LU and QR decompositions--their computation and applications. The singular value decomposition is also treated, although algorithms for its computation will appear in the second volume of the series. The present volume contains 65 algorithms formally presented in pseudocode. Other volumes in the series will treat eigensystems, iterative methods, sparse matrices, and structured problems. The series is aimed at the nonspecialist who needs more than black-box proficiency with matrix computations. To give the series focus, the emphasis is on algorithms, their derivation, and their analysis. The reader is assumed to have a knowledge of elementary analysis and linear algebra and a reasonable amount of programming experience, typically that of the beginning graduate engineer or the undergraduate in an honors program. Strictly speaking, the individual volumes are not textbooks, although they are intended to teach, the guiding principle being that if something is worth explaining, it is worth explaining fully. This has necessarily restricted the scope of the series, but the selection of topics should give the reader a sound basis for further study.
This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists in computational mathematics, physics, chemistry and engineering.
Matrix Algorithms in MATLAB focuses on the MATLAB code implementations of matrix algorithms. The MATLAB codes presented in the book are tested with thousands of runs of MATLAB randomly generated matrices, and the notation in the book follows the MATLAB style to ensure a smooth transition from formulation to the code, with MATLAB codes discussed in this book kept to within 100 lines for the sake of clarity. The book provides an overview and classification of the interrelations of various algorithms, as well as numerous examples to demonstrate code usage and the properties of the presented algorithms. Despite the wide availability of computer programs for matrix computations, it continues to be an active area of research and development. New applications, new algorithms, and improvements to old algorithms are constantly emerging. - Presents the first book available on matrix algorithms implemented in real computer code - Provides algorithms covered in three parts, the mathematical development of the algorithm using a simple example, the code implementation, and then numerical examples using the code - Allows readers to gain a quick understanding of an algorithm by debugging or reading the source code - Includes downloadable codes on an accompanying companion website, www.matrixalgorithmsinmatlab.com, that can be used in other software development
Describes a selection of important parallel algorithms for matrix computations. Reviews the current status and provides an overall perspective of parallel algorithms for solving problems arising in the major areas of numerical linear algebra, including (1) direct solution of dense, structured, or sparse linear systems, (2) dense or structured least squares computations, (3) dense or structured eigenvaluen and singular value computations, and (4) rapid elliptic solvers. The book emphasizes computational primitives whose efficient execution on parallel and vector computers is essential to obtain high performance algorithms. Consists of two comprehensive survey papers on important parallel algorithms for solving problems arising in the major areas of numerical linear algebra--direct solution of linear systems, least squares computations, eigenvalue and singular value computations, and rapid elliptic solvers, plus an extensive up-to-date bibliography (2,000 items) on related research.
Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on both the numerical formulation of the algorithm and its differential geometric abstraction--illustrating how good algorithms draw equally from the insights of differential geometry, optimization, and numerical analysis. Two more theoretical chapters provide readers with the background in differential geometry necessary to algorithmic development. In the other chapters, several well-known optimization methods such as steepest descent and conjugate gradients are generalized to abstract manifolds. The book provides a generic development of each of these methods, building upon the material of the geometric chapters. It then guides readers through the calculations that turn these geometrically formulated methods into concrete numerical algorithms. The state-of-the-art algorithms given as examples are competitive with the best existing algorithms for a selection of eigenspace problems in numerical linear algebra. Optimization Algorithms on Matrix Manifolds offers techniques with broad applications in linear algebra, signal processing, data mining, computer vision, and statistical analysis. It can serve as a graduate-level textbook and will be of interest to applied mathematicians, engineers, and computer scientists.
Several very powerful numerical linear algebra techniques are available for solving problems in data mining and pattern recognition. This application-oriented book describes how modern matrix methods can be used to solve these problems, gives an introduction to matrix theory and decompositions, and provides students with a set of tools that can be modified for a particular application.Matrix Methods in Data Mining and Pattern Recognition is divided into three parts. Part I gives a short introduction to a few application areas before presenting linear algebra concepts and matrix decompositions that students can use in problem-solving environments such as MATLAB®. Some mathematical proofs that emphasize the existence and properties of the matrix decompositions are included. In Part II, linear algebra techniques are applied to data mining problems. Part III is a brief introduction to eigenvalue and singular value algorithms. The applications discussed by the author are: classification of handwritten digits, text mining, text summarization, pagerank computations related to the GoogleÔ search engine, and face recognition. Exercises and computer assignments are available on a Web page that supplements the book.Audience The book is intended for undergraduate students who have previously taken an introductory scientific computing/numerical analysis course. Graduate students in various data mining and pattern recognition areas who need an introduction to linear algebra techniques will also find the book useful.Contents Preface; Part I: Linear Algebra Concepts and Matrix Decompositions. Chapter 1: Vectors and Matrices in Data Mining and Pattern Recognition; Chapter 2: Vectors and Matrices; Chapter 3: Linear Systems and Least Squares; Chapter 4: Orthogonality; Chapter 5: QR Decomposition; Chapter 6: Singular Value Decomposition; Chapter 7: Reduced-Rank Least Squares Models; Chapter 8: Tensor Decomposition; Chapter 9: Clustering and Nonnegative Matrix Factorization; Part II: Data Mining Applications. Chapter 10: Classification of Handwritten Digits; Chapter 11: Text Mining; Chapter 12: Page Ranking for a Web Search Engine; Chapter 13: Automatic Key Word and Key Sentence Extraction; Chapter 14: Face Recognition Using Tensor SVD. Part III: Computing the Matrix Decompositions. Chapter 15: Computing Eigenvalues and Singular Values; Bibliography; Index.
Clear prose, tight organization, and a wealth of examples and computational techniques make Basic Matrix Algebra with Algorithms and Applications an outstanding introduction to linear algebra. The author designed this treatment specifically for freshman majors in mathematical subjects and upper-level students in natural resources, the social sciences, business, or any discipline that eventually requires an understanding of linear models. With extreme pedagogical clarity that avoids abstraction wherever possible, the author emphasizes minimal polynomials and their computation using a Krylov algorithm. The presentation is highly visual and relies heavily on work with a graphing calculator to allow readers to focus on concepts and techniques rather than on tedious arithmetic. Supporting materials, including test preparation Maple worksheets, are available for download from the Internet. This unassuming but insightful and remarkably original treatment is organized into bite-sized, clearly stated objectives. It goes well beyond the LACSG recommendations for a first course while still implementing their philosophy and core material. Classroom tested with great success, it prepares readers well for the more advanced studies their fields ultimately will require.
Compared to other books devoted to matrices, this volume is unique in covering the whole of a triptych consisting of algebraic theory, algorithmic problems and numerical applications, all united by the essential use and urge for development of matrix methods. This was the spirit of the 2nd International Conference on Matrix Methods and Operator Equations from 23-27 July 2007 in Moscow that was organized by Dario Bini, Gene Golub, Alexander Guterman, Vadim Olshevsky, Stefano Serra-Capizzano, Gilbert Strang and Eugene Tyrtyshnikov.Matrix methods provide the key to many problems in pure and applied mathematics. However, linear algebra theory, numerical algorithms and matrices in FEM/BEM applications usually live as if in three separate worlds. In this volume, maybe for the first time ever, they are compiled together as one entity as it was at the Moscow meeting, where the algebraic part was impersonated by Hans Schneider, algorithms by Gene Golub, and applications by Guri Marchuk. All topics intervened in plenary sessions are specially categorized into three sections of this volume.The soul of the meeting was Gene Golub, who rendered a charming “Golub's dimension” to the three main axes of the conference topics. This volume is dedicated in gratitude to his memory.
This user-friendly, engaging textbook makes the material accessible to graduate students and new researchers who wish to study the rapidly exploding area of computations with structured matrices and polynomials. The book goes beyond research frontiers and, apart from very recent research articles, includes previously unpublished results.