Download Free Matrices Book in PDF and EPUB Free Download. You can read online Matrices and write the review.

Concise undergraduate text focuses on problem solving, rather than elaborate proofs. The first three chapters present the basics of matrices, including addition, multiplication, and division. In later chapters the author introduces vectors and shows how to use vectors and matrices to solve systems of linear equations. 1961 edition. 20 black-and-white illustrations.
A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.
Students receive the benefits of axiom-based mathematical reasoning as well as a grasp of concrete formulations. Suitable as a primary or supplementary text for college-level courses in linear algebra. 1957 edition.
The breadth of matrix theory's applications is reflected by this volume, which features material of interest to applied mathematicians as well as to control engineers studying stability of a servo-mechanism and numerical analysts evaluating the roots of a polynomial. Starting with a survey of complex symmetric, antisymmetric, and orthogonal matrices, the text advances to explorations of singular bundles of matrices and matrices with nonnegative elements. Applied mathematicians will take particular note of the full and readable chapter on applications of matrix theory to the study of systems of linear differential equations, and the text concludes with an exposition on the Routh-Hurwitz problem plus several helpful appendixes. 1959 edition.
This book provides mathematics teachers with an elementary introduction to matrix algebra and its uses in formulating and solving practical problems, solving systems of linear equations, representing combinations of affine (including linear) transformations of the plane and modelling finite state Markov chains.
Random matrix theory has many roots and many branches in mathematics, statistics, physics, computer science, data science, numerical analysis, biology, ecology, engineering, and operations research. This book provides a snippet of this vast domain of study, with a particular focus on the notations of universality and integrability. Universality shows that many systems behave the same way in their large scale limit, while integrability provides a route to describe the nature of those universal limits. Many of the ten contributed chapters address these themes, while others touch on applications of tools and results from random matrix theory. This book is appropriate for graduate students and researchers interested in learning techniques and results in random matrix theory from different perspectives and viewpoints. It also captures a moment in the evolution of the theory, when the previous decade brought major break-throughs, prompting exciting new directions of research.
This textbook covers the material for an undergraduate linear algebra course: vectors, matrices, linear transformations, computational techniques, geometric constructions, and theoretical foundations. The explanations are given in an informal conversational tone. The book also contains 100+ problems and exercises with answers and solutions. A special feature of this textbook is the prerequisites chapter that covers topics from high school math, which are necessary for learning linear algebra. The presence of this chapter makes the book suitable for beginners and the general audience-readers need not be math experts to read this book. Another unique aspect of the book are the applications chapters (Ch 7, 8, and 9) that discuss applications of linear algebra to engineering, computer science, economics, chemistry, machine learning, and even quantum mechanics.
Matrix algebra; Determinants, inverse matrices, and rank; Linear, euclidean, and unitary spaces; Linear transformations and matrices; Linear transformations in unitary spaces and simple matrices; The jordan canonical form: a geometric approach; Matrix polynomials and normal forms; The variational method; Functions of matrices; Norms and bounds for eigenvalues; Perturbation theory; Linear matrices equations and generalized inverses; Stability problems; Matrix polynomials; Nonnegative matrices.