Download Free Mathematics Tasks For The Thinking Classroom Grades K 5 Book in PDF and EPUB Free Download. You can read online Mathematics Tasks For The Thinking Classroom Grades K 5 and write the review.

A thinking student is an engaged student Teachers often find it difficult to implement lessons that help students go beyond rote memorization and repetitive calculations. In fact, institutional norms and habits that permeate all classrooms can actually be enabling "non-thinking" student behavior. Sparked by observing teachers struggle to implement rich mathematics tasks to engage students in deep thinking, Peter Liljedahl has translated his 15 years of research into this practical guide on how to move toward a thinking classroom. Building Thinking Classrooms in Mathematics, Grades K–12 helps teachers implement 14 optimal practices for thinking that create an ideal setting for deep mathematics learning to occur. This guide Provides the what, why, and how of each practice and answers teachers’ most frequently asked questions Includes firsthand accounts of how these practices foster thinking through teacher and student interviews and student work samples Offers a plethora of macro moves, micro moves, and rich tasks to get started Organizes the 14 practices into four toolkits that can be implemented in order and built on throughout the year When combined, these unique research-based practices create the optimal conditions for learner-centered, student-owned deep mathematical thinking and learning, and have the power to transform mathematics classrooms like never before.
Practical and proven math tasks to maximize student thinking and learning Building upon the blockbuster success of Building Thinking Classrooms in Mathematics, Peter Liljedahl has joined forces with co-author Maegan Giroux to bring the Building Thinking Classrooms (BTC) framework to life in this new book, Mathematics Tasks for the Thinking Classroom, Grades K-5. But this book is so much more than simply a collection of good thinking tasks. It delves deeper into the implementation of the 14 practices from the BTC framework by updating the practices with the newest research, and focusing on the practice through the lens of rich math tasks that address specific mathematical learning outcomes or standards. Across the 20 non-curricular tasks and 30 curricular tasks used as models, this book: Helps you choose tasks to fit your particular math standards, goals, and the competencies you want your students to build Walks you through all the steps and scripts to launch, facilitate, and consolidate each task Shares examples of possible student solutions along with hints you might offer to help their thinking along Offers tasks for consolidation, example notes to my future forgetful self, and mild, medium, and spicy check-your-understanding questions (CYUs) for every thin sliced sequences of curricular tasks Imparts reflections from the authors on each task The book closes with specific guidance on how to find more tasks or craft your own non-curricular and curricular tasks, along with answers to educators’ frequently asked questions. It includes access to a companion website that includes downloadables and a task template for creating your own tasks. Whether you are new to BTC or a seasoned user, Mathematics Tasks for the Thinking Classroom, Grades K-5 will help teachers, coaches, and specialists transform traditional math classrooms into dynamic and thought-provoking learning spaces.
Detailed plans for helping elementary students experience deep mathematical learning Do you work tirelessly to make your math lessons meaningful, challenging, accessible, and engaging? Do you spend hours you don’t have searching for, adapting, and creating tasks to provide rich experiences for your students that supplement your mathematics curriculum? Help has arrived! Classroom Ready-Rich Math Tasks for Grades 4-5 details more than 50 research- and standards-aligned, high-cognitive-demand tasks that will have your students doing deep-problem-based learning. These ready-to-implement, engaging tasks connect skills, concepts and practices, while encouraging students to reason, problem-solve, discuss, explore multiple solution pathways, connect multiple representations, and justify their thinking. They help students monitor their own thinking and connect the mathematics they know to new situations. In other words, these tasks allow students to truly do mathematics! Written with a strengths-based lens and an attentiveness to all students, this guide includes: • Complete task-based lessons, referencing mathematics standards and practices, vocabulary, and materials • Downloadable planning tools, student resource pages, and thoughtful questions, and formative assessment prompts • Guidance on preparing, launching, facilitating, and reflecting on each task • Notes on access and equity, focusing on students’ strengths, productive struggle, and distance or alternative learning environments. With concluding guidance on adapting or creating additional rich tasks for your students, this guide will help you give all of your students the deepest, most enriching and engaging mathematics learning experience possible.
"Articles from Teaching children mathematics; Mathematics teaching in the middle school; Mathematics teacher; Student math notes; the 2001, 2002, and 2003 NCTM yearbooks; and Classroom activities for learning and teaching measurement."
Differentiation that shifts your instruction and boosts ALL student learning! Nationally recognized math differentiation expert Nanci Smith debunks the myths surrounding differentiated instruction, revealing a practical approach to real learning differences. Theory-lite and practice-heavy, this book provides a concrete and manageable framework for helping all students know, understand, and even enjoy doing mathematics. Busy K-5 mathematics educators learn to Provide practical structures for assessing how students learn and process mathematical concepts Design, implement, manage, and formatively assess and respond to learning in a standards-aligned differentiated classroom; and Adjust current instructional materials to better meet students' needs Includes classroom videos and a companion website.
This book provides 25 easily administered assessments of learners' math knowledge that help teachers monitor learning in real time and improve all students' math skills.
Because fluency practice is not a worksheet. Fluency in mathematics is more than adeptly using basic facts or implementing algorithms. Real fluency involves reasoning and creativity, and it varies by the situation at hand. Figuring Out Fluency in Mathematics Teaching and Learning offers educators the inspiration to develop a deeper understanding of procedural fluency, along with a plethora of pragmatic tools for shifting classrooms toward a fluency approach. In a friendly and accessible style, this hands-on guide empowers educators to support students in acquiring the repertoire of reasoning strategies necessary to becoming versatile and nimble mathematical thinkers. It includes: "Seven Significant Strategies" to teach to students as they work toward procedural fluency. Activities, fluency routines, and games that encourage learning the efficiency, flexibility, and accuracy essential to real fluency. Reflection questions, connections to mathematical standards, and techniques for assessing all components of fluency. Suggestions for engaging families in understanding and supporting fluency. Fluency is more than a toolbox of strategies to choose from; it’s also a matter of equity and access for all learners. Give your students the knowledge and power to become confident mathematical thinkers.
Selected as the Michigan Council of Teachers of Mathematics winter book club book! Rich tasks, collaborative work, number talks, problem-based learning, direct instruction...with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.
Being an effective math educator is one part based on the quality of the tasks we give, one part how we diagnose what we see, and one part what we do with what we find. Yet with so many students and big concepts to cover, it can be hard to slow down enough to look for those moments when students’ responses tell us what we need to know about next best steps. In this remarkable book, John SanGiovanni helps us value our young learners’ misconceptions and incomplete understandings as much as their correct ones—because it’s the gap in their understanding today that holds the secrets to planning tomorrow’s best teaching. SanGiovanni lays out 160 high-quality tasks aligned to the standards and big ideas of grades K-2 mathematics, including counting and representing numbers, number relationships and comparison, addition and subtraction within 100 and 1000, money and time, and multiplication and division. The tasks are all downloadable so you can use or modify them for instruction and assessment. Each big idea offers a starting task followed by: what makes it a high-quality taskwhat you might anticipate before students work with the task 4 student examples of the completed task showcasing a distinct "gap" commentary on what precisely counts for mathematical understanding and the next instructional steps commentary on the misconception or incomplete understanding so you learn why the student veered off course three additional tasks aligned to the mathematics topic and ideas about what students might do with these additional tasks. It’s time to break our habit of rushing into re-teaching for correctness and instead get curious about the space between right and wrong answers. Mine the Gap for Mathematical Understanding is a book you will return to again and again to get better at selecting tasks that will uncover students’ reasoning—better at discerning the quality and clarity of students’ understanding—and better at planning teaching based on the gaps you see.
This supplement explains how the practices outlined in the book "Building Thinking Classrooms in Mathematics" work in a classroom with social distancing or in settings that are not always face-to-face. It walks teachers through how to adapt the 14 practices for 12 distinct settings, some of which came about as a result of the COVID-19 pandemic. Includes updated toolkits and a recommended order for the implementation of the practices for each of the settings.