Download Free Mathematics Self Study Guide Book in PDF and EPUB Free Download. You can read online Mathematics Self Study Guide and write the review.

A sharp mind, like a healthy body, is subject to the same ruleof nature: Use it or lose it Need a calculator just to work out a 15 percent service charge? Not exactly sure how to get the calculator to give you the figureyou need? Turn to this revised and updated edition of All the MathYou'll Ever Need, the friendliest, funniest, and easiest workoutprogram around. In no time, you'll have total command of all the powerfulmathematical tools needed to make numbers work for you. In adollars-and-cents, bottom-line world, where numbers influenceeverything, none of us can afford to let our math skills atrophy.This step-by-step personal math trainer: Refreshes practical math skills for your personal andprofessional needs, with examples based on everyday situations. Offers straightforward techniques for working with decimals and fractions. Demonstrates simple ways to figure discounts, calculatemortgage interest rates, and work out time, rate, and distance problems. Contains no complex formulas and no unnecessary technical terms.
The book is about arithmetic sequences, geometric sequences, recursive sequences, and arithmetic sequences of high order. The core of the book are important to high school students and college students. As a self-study guide, the book provides plenty of examples and explanations to help readers to grasp math concepts.
This textbook covers the material for an undergraduate linear algebra course: vectors, matrices, linear transformations, computational techniques, geometric constructions, and theoretical foundations. The explanations are given in an informal conversational tone. The book also contains 100+ problems and exercises with answers and solutions. A special feature of this textbook is the prerequisites chapter that covers topics from high school math, which are necessary for learning linear algebra. The presence of this chapter makes the book suitable for beginners and the general audience-readers need not be math experts to read this book. Another unique aspect of the book are the applications chapters (Ch 7, 8, and 9) that discuss applications of linear algebra to engineering, computer science, economics, chemistry, machine learning, and even quantum mechanics.
At the intersection of mathematics, computer science, and philosophy, mathematical logic examines the power and limitations of formal mathematical thinking. In this expansion of Leary's user-friendly 1st edition, readers with no previous study in the field are introduced to the basics of model theory, proof theory, and computability theory. The text is designed to be used either in an upper division undergraduate classroom, or for self study. Updating the 1st Edition's treatment of languages, structures, and deductions, leading to rigorous proofs of Gödel's First and Second Incompleteness Theorems, the expanded 2nd Edition includes a new introduction to incompleteness through computability as well as solutions to selected exercises.
The book is about mathematical induction for college students. It discusses the first principle and its three variations such as the second principle.. As a self-study guide, the book gives plenty of examples and explanations to help readers to grasp math concepts.
Previously published under the titles Pre-algebra: the easy way and E-Z pre-algebra.
This elementary presentation exposes readers to both the process of rigor and the rewards inherent in taking an axiomatic approach to the study of functions of a real variable. The aim is to challenge and improve mathematical intuition rather than to verify it. The philosophy of this book is to focus attention on questions which give analysis its inherent fascination. Each chapter begins with the discussion of some motivating examples and concludes with a series of questions.
Selected as the Michigan Council of Teachers of Mathematics winter book club book! Rich tasks, collaborative work, number talks, problem-based learning, direct instruction...with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.
This book provides a systematic introduction to functions of one complex variable. Its novel feature is the consistent use of special color representations – so-called phase portraits – which visualize functions as images on their domains. Reading Visual Complex Functions requires no prerequisites except some basic knowledge of real calculus and plane geometry. The text is self-contained and covers all the main topics usually treated in a first course on complex analysis. With separate chapters on various construction principles, conformal mappings and Riemann surfaces it goes somewhat beyond a standard programme and leads the reader to more advanced themes. In a second storyline, running parallel to the course outlined above, one learns how properties of complex functions are reflected in and can be read off from phase portraits. The book contains more than 200 of these pictorial representations which endow individual faces to analytic functions. Phase portraits enhance the intuitive understanding of concepts in complex analysis and are expected to be useful tools for anybody working with special functions – even experienced researchers may be inspired by the pictures to new and challenging questions. Visual Complex Functions may also serve as a companion to other texts or as a reference work for advanced readers who wish to know more about phase portraits.
Eureka Math is a comprehensive, content-rich PreK–12 curriculum that follows the focus and coherence of the Common Core State Standards in Mathematics (CCSSM) and carefully sequences the mathematical progressions into expertly crafted instructional modules. The companion Study Guides to Eureka Math gather the key components of the curriculum for each grade into a single location, unpacking the standards in detail so that both users and non-users of Eureka Math can benefit equally from the content presented. Each of the Eureka Math Curriculum Study Guides includes narratives that provide educators with an overview of what students should be learning throughout the year, information on alignment to the instructional shifts and the standards, design of curricular components, approaches to differentiated instruction, and descriptions of mathematical models. The Study Guides can serve as either a self-study professional development resource or as the basis for a deep group study of the standards for a particular grade. For teachers who are new to the classroom or the standards, the Study Guides introduce them not only to Eureka Math but also to the content of the grade level in a way they will find manageable and useful. Teachers familiar with the Eureka Math curriculum will also find this resource valuable as it allows for a meaningful study of the grade level content in a way that highlights the coherence between modules and topics. The Study Guides allow teachers to obtain a firm grasp on what it is that students should master during the year. The Eureka Math Curriculum Study Guide, Grade 2 provides an overview of all of the Grade 2 modules, including Sums and Differences to 20; Addition and Subtraction of Length Units; Place Value, Counting, and Comparison of Numbers to 1,000; Addition and Subtraction Within 200 with Word Problems to 100; Addition and Subtraction Within 1,000 with Word Problems to 100; Foundations of Multiplication and Division; Problem Solving with Length, Money, and Data; and Time, Shapes, and Fractions as Equal Parts of Shapes.