Download Free Mathematics Of Multidimensional Fourier Transform Algorithms Book in PDF and EPUB Free Download. You can read online Mathematics Of Multidimensional Fourier Transform Algorithms and write the review.

The main emphasis of this book is the development of algorithms for processing multi-dimensional digital signals, and particularly algorithms for multi-dimensional Fourier transforms, in a form that is convenient for writing highly efficient code on a variety of vector and parallel computers.
Following an introduction to the basis of the fast Fourier transform (FFT), this book focuses on the implementation details on FFT for parallel computers. FFT is an efficient implementation of the discrete Fourier transform (DFT), and is widely used for many applications in engineering, science, and mathematics. Presenting many algorithms in pseudo-code and a complexity analysis, this book offers a valuable reference guide for graduate students, engineers, and scientists in the field who wish to apply FFT to large-scale problems. Parallel computation is becoming indispensable in solving the large-scale problems increasingly arising in a wide range of applications. The performance of parallel supercomputers is steadily improving, and it is expected that a massively parallel system with hundreds of thousands of compute nodes equipped with multi-core processors and accelerators will be available in the near future. Accordingly, the book also provides up-to-date computational techniques relevant to the FFT in state-of-the-art parallel computers. Following the introductory chapter, Chapter 2 introduces readers to the DFT and the basic idea of the FFT. Chapter 3 explains mixed-radix FFT algorithms, while Chapter 4 describes split-radix FFT algorithms. Chapter 5 explains multi-dimensional FFT algorithms, Chapter 6 presents high-performance FFT algorithms, and Chapter 7 addresses parallel FFT algorithms for shared-memory parallel computers. In closing, Chapter 8 describes parallel FFT algorithms for distributed-memory parallel computers.
This book presents an introduction to the principles of the fast Fourier transform. This book covers FFTs, frequency domain filtering, and applications to video and audio signal processing. As fields like communications, speech and image processing, and related areas are rapidly developing, the FFT as one of essential parts in digital signal processing has been widely used. Thus there is a pressing need from instructors and students for a book dealing with the latest FFT topics. This book provides thorough and detailed explanation of important or up-to-date FFTs. It also has adopted modern approaches like MATLAB examples and projects for better understanding of diverse FFTs.
This book presents in a unified way the various fast algorithms that are used for the implementation of digital filters and the evaluation of discrete Fourier transforms. The book consists of eight chapters. The first two chapters are devoted to background information and to introductory material on number theory and polynomial algebra. This section is limited to the basic concepts as they apply to other parts of the book. Thus, we have restricted our discussion of number theory to congruences, primitive roots, quadratic residues, and to the properties of Mersenne and Fermat numbers. The section on polynomial algebra deals primarily with the divisibility and congruence properties of polynomials and with algebraic computational complexity. The rest of the book is focused directly on fast digital filtering and discrete Fourier transform algorithms. We have attempted to present these techniques in a unified way by using polynomial algebra as extensively as possible. This objective has led us to reformulate many of the algorithms which are discussed in the book. It has been our experience that such a presentation serves to clarify the relationship between the algorithms and often provides clues to improved computation techniques. Chapter 3 reviews the fast digital filtering algorithms, with emphasis on algebraic methods and on the evaluation of one-dimensional circular convolutions. Chapters 4 and 5 present the fast Fourier transform and the Winograd Fourier transform algorithm.
This book offers a unified presentation of Fourier theory and corresponding algorithms emerging from new developments in function approximation using Fourier methods. It starts with a detailed discussion of classical Fourier theory to enable readers to grasp the construction and analysis of advanced fast Fourier algorithms introduced in the second part, such as nonequispaced and sparse FFTs in higher dimensions. Lastly, it contains a selection of numerical applications, including recent research results on nonlinear function approximation by exponential sums. The code of most of the presented algorithms is available in the authors’ public domain software packages. Students and researchers alike benefit from this unified presentation of Fourier theory and corresponding algorithms.
This easily accessible book provides a broad view of the latest developments in the field of fast digital signal processing algorithms. It bridges the gap between DSP algorithms and their implementation on a variety of serial and super computers.
This book has grown from notes used by the authors to instruct fast transform classes. One class was sponsored by the Training Department of Rockwell International, and another was sponsored by the Department of Electrical Engineering of The University of Texas at Arlington. Some of the material was also used in a short course sponsored by the University of Southern California. The authors are indebted to their students for motivating the writing of this book and for suggestions to improve it.
The latest edition of the essential text and professional reference, with substantial new material on such topics as vEB trees, multithreaded algorithms, dynamic programming, and edge-based flow. Some books on algorithms are rigorous but incomplete; others cover masses of material but lack rigor. Introduction to Algorithms uniquely combines rigor and comprehensiveness. The book covers a broad range of algorithms in depth, yet makes their design and analysis accessible to all levels of readers. Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor. The first edition became a widely used text in universities worldwide as well as the standard reference for professionals. The second edition featured new chapters on the role of algorithms, probabilistic analysis and randomized algorithms, and linear programming. The third edition has been revised and updated throughout. It includes two completely new chapters, on van Emde Boas trees and multithreaded algorithms, substantial additions to the chapter on recurrence (now called “Divide-and-Conquer”), and an appendix on matrices. It features improved treatment of dynamic programming and greedy algorithms and a new notion of edge-based flow in the material on flow networks. Many exercises and problems have been added for this edition. The international paperback edition is no longer available; the hardcover is available worldwide.