Download Free Mathematics Its Historical Aspects Wonders And Beyond Book in PDF and EPUB Free Download. You can read online Mathematics Its Historical Aspects Wonders And Beyond and write the review.

Whenever the topic of mathematics is mentioned, people tend to indicate their weakness in the subject as a result of not having enjoyed its instruction during their school experience. Many students unfortunately do not have very positive experiences when learning mathematics, which can result from teachers who have a tendency 'to teach to the test'. This is truly unfortunate for several reasons. First, basic algebra and geometry, which are taken by almost all students, are not difficult subjects, and all students should be able to master them with the proper motivational instruction. Second, we live in a technical age, and being comfortable with basic mathematics can certainly help you deal with life's daily challenges. Other, less tangible reasons, are the pleasure one can experience from understanding the many intricacies of mathematics and its relation to the real world, experiencing the satisfaction of solving a mathematical problem, and discovering the intrinsic beauty and historical development of many mathematical expressions and relationships. These are some of the experiences that this book is designed to deliver to the reader.The book offers 101 mathematical gems, some of which may require a modicum of high school mathematics and others, just a desire to carefully apply oneself to the ideas. Many folks have spent years encountering mathematical terms, symbols, relationships and other esoteric expressions. Their origins and their meanings may never have been revealed, such as the symbols +, -, =, π. ꝏ, √, ∑, and many others. This book provides a delightful insight into the origin of mathematical symbols and popular theorems such as the Pythagorean Theorem and the Fibonacci Sequence, common mathematical mistakes and curiosities, intriguing number relationships, and some of the different mathematical procedures in various countries. The book uses a historical and cultural approach to the topics, which enhances the subject matter and greatly adds to its appeal. The mathematical material can, therefore, be more fully appreciated and understood by anyone who has a curiosity and interest in mathematics, especially if in their past experience they were expected to simply accept ideas and concepts without a clear understanding of their origins and meaning. It is hoped that this will cast a new and positive picture of mathematics and provide a more favorable impression of this most important subject and be a different experience than what many may have previously encountered. It is also our wish that some of the fascination and beauty of mathematics shines through in these presentations.
Whenever the topic of mathematics is mentioned, people tend to indicate their weakness in the subject as a result of not having enjoyed its instruction during their school experience. Many students unfortunately do not have very positive experiences when learning mathematics, which can result from teachers who have a tendency 'to teach to the test'. This is truly unfortunate for several reasons. First, basic algebra and geometry, which are taken by almost all students, are not difficult subjects, and all students should be able to master them with the proper motivational instruction. Second, we live in a technical age, and being comfortable with basic mathematics can certainly help you deal with life's daily challenges. Other, less tangible reasons, are the pleasure one can experience from understanding the many intricacies of mathematics and its relation to the real world, experiencing the satisfaction of solving a mathematical problem, and discovering the intrinsic beauty and historical development of many mathematical expressions and relationships. These are some of the experiences that this book is designed to deliver to the reader.The book offers 101 mathematical gems, some of which may require a modicum of high school mathematics and others, just a desire to carefully apply oneself to the ideas. Many folks have spent years encountering mathematical terms, symbols, relationships and other esoteric expressions. Their origins and their meanings may never have been revealed, such as the symbols +, -, =, π. ꝏ, √, ∑, and many others. This book provides a delightful insight into the origin of mathematical symbols and popular theorems such as the Pythagorean Theorem and the Fibonacci Sequence, common mathematical mistakes and curiosities, intriguing number relationships, and some of the different mathematical procedures in various countries. The book uses a historical and cultural approach to the topics, which enhances the subject matter and greatly adds to its appeal. The mathematical material can, therefore, be more fully appreciated and understood by anyone who has a curiosity and interest in mathematics, especially if in their past experience they were expected to simply accept ideas and concepts without a clear understanding of their origins and meaning. It is hoped that this will cast a new and positive picture of mathematics and provide a more favorable impression of this most important subject and be a different experience than what many may have previously encountered. It is also our wish that some of the fascination and beauty of mathematics shines through in these presentations.
By introducing us to the major characters and leading us through many historical twists and turns, Johnny slowly unravels the tale of how humanity built up a knowledge and understanding of shapes, numbers and patterns from ancient times, a story that leads directly to the technological wonderland we live in today. As Galileo said, 'Everything in the universe is written in the language of mathematics', and Wonders Beyond Numbers is your guide to this language. (4ème de couverture)
Mathematics is a subject taught from kindergarten through to high school, and yet it is the one subject that most adults are almost proud to admit to not having been very good at, and, therefore, tend to avoid it where they can. However, one of the key factors in mathematics is its ability to enable us to solve everyday problems. When we consider 'the worst-case scenario' of the situation, it is analogous to solving a mathematical problem by considering extremes. Or, we might consider the best path to take from point A to point B, where geometric relationships can be helpful. This book is intended to demonstrate a variety of neglected aspects of mathematics, in order to demonstrate the power and beauty of the field of mathematics beyond where most people, students, and teachers believe is possible.The chapters of the book explore a multitude of topics: unusual arithmetic calculations and shortcuts, entertaining and instructional problem-solving strategies, unusual applications of algebra, and how geometry allows us to better appreciate physical relationships. Only a basic mathematical knowledge is needed to understand these topics and problems; however, the book also demonstrates that, armed with even this level of understanding, our mathematical skills far exceed what we learned at school! The final chapter is the most challenging, and explores a curious problem-solving technique.
The art or skill of problem solving in mathematics is mostly relegated to the strategies one can use to solve problems in the field. Although this book addresses that issue, it delves deeply into the psychological aspects that affect successful problem-solving. Such topics as decision-making, judgment, and reasoning as well as using memory effectively and a discussion of the thought processes that could help address certain problem-solving situations.Most books that address problem-solving and mathematics focus on the various skills. This book goes beyond that and investigates the psychological aspects to solving problems in mathematics.
Seduction is not just an end result, but a process — and in mathematics, both the end results and the process by which those end results are achieved are often charming and elegant.This helps to explain why so many people — not just those for whom math plays a key role in their day-to-day lives — have found mathematics so seductive. Math is unique among all subjects in that it contains end results of amazing insight and power, and lines of reasoning that are clever, charming, and elegant. This book is a collection of those results and lines of reasoning that make us say, 'OMG, that's just amazing,' — because that's what mathematics is to those who love it. In addition, some of the stories about mathematical discoveries and the people who discovered them are every bit as fascinating as the discoveries themselves.This book contains material capable of being appreciated by students in elementary school — as well as some material that will probably be new to even the more mathematically sophisticated. Most of the book can be easily understood by those whose only math courses are algebra and geometry, and who may have missed the magic, enchantment, and wonder that is the special province of mathematics.
This book offers a fun and enriching introduction to chaos theory, fractals and dynamical systems, and on the applications of fractals to computer generated graphics and image compression. Introduction to Chaos, Fractals and Dynamical Systems particularly focuses on natural and human phenomenon that can be modeled as fractals, using simple examples to explain the theory of chaos and how it affects all of us. Then, using straightforward mathematic and intuitive descriptions, computer generated graphics and photographs of natural scenes are used to illustrate the beauty of fractals and their importance in our world. Finally, the concept of Dynamical Systems, that is, time-dependent systems, the foundation of Chaos and Fractal, is introduced. Everyday examples are again used to illustrate concepts, and the importance of understanding how these vital systems affect our lives. Throughout the fascinating history of the evolution of chaos theory, fractals and dynamical systems is presented, along with brief introductions to the scientists, mathematicians and engineers who created this knowledge.Introduction to Chaos, Fractals and Dynamical Systems contains ample mathematical definitions, representations, discussions and exercises, so that this book can be used as primary or secondary source in home schooling environments.The book is suitable for homeschooling as a focused course on the subject matter or as a classroom supplement for a variety of courses at the late junior high or early high-school level. For example, in addition to a standalone course on Chaos, Fractals and Dynamical Systems (or similar title), this book could be used with the following courses:The text can also be used in conjunction with mathematics courses for undergraduates for non-science majors. The book can also be used for informal and lively family study and discussion.For each chapter, exercises and things to do are included. These activities range from simple computational tasks to more elaborate computer projects, related activities, biographical research and writing assignments.
This book contains the most interesting problems from the first 24 years of the 'Mathematical Duel', an annual international mathematics competition between the students of four schools: the Gymnázium Mikuláše Koperníka in Bílovec, Czech Republic, the Akademicki Zespół Szkół Ogólnokształcących in Chorzów, Poland, the Bundesrealgymnasium Kepler in Graz, Austria and the Gymnázium Jakuba Škody in Přerov, Czech Republic.The problems are presented by topic, grouped under the headings Geometry, Combinatorics, Number Theory and Algebra, which is typical for olympiad-style competitions.Above all, it is of interest to students preparing for mathematics competitions as well as teachers looking for material to prepare their students, as well as mathematically interested enthusiasts from all walks of life looking for an intellectual challenge.
This is a concise introductory textbook for a one-semester (40-class) course in the history and philosophy of mathematics. It is written for mathemat ics majors, philosophy students, history of science students, and (future) secondary school mathematics teachers. The only prerequisite is a solid command of precalculus mathematics. On the one hand, this book is designed to help mathematics majors ac quire a philosophical and cultural understanding of their subject by means of doing actual mathematical problems from different eras. On the other hand, it is designed to help philosophy, history, and education students come to a deeper understanding of the mathematical side of culture by means of writing short essays. The way I myself teach the material, stu dents are given a choice between mathematical assignments, and more his torical or philosophical assignments. (Some sample assignments and tests are found in an appendix to this book. ) This book differs from standard textbooks in several ways. First, it is shorter, and thus more accessible to students who have trouble coping with vast amounts of reading. Second, there are many detailed explanations of the important mathematical procedures actually used by famous mathe maticians, giving more mathematically talented students a greater oppor tunity to learn the history and philosophy by way of problem solving.
An exquisite visual celebration of the 2,500-year history of geometry If you've ever thought that mathematics and art don't mix, this stunning visual history of geometry will change your mind. As much a work of art as a book about mathematics, Beautiful Geometry presents more than sixty exquisite color plates illustrating a wide range of geometric patterns and theorems, accompanied by brief accounts of the fascinating history and people behind each. With artwork by Swiss artist Eugen Jost and text by math historian Eli Maor, this unique celebration of geometry covers numerous subjects, from straightedge-and-compass constructions to intriguing configurations involving infinity. The result is a delightful and informative illustrated tour through the 2,500-year-old history of one of the most important branches of mathematics.