Download Free Mathematics In Society And History Book in PDF and EPUB Free Download. You can read online Mathematics In Society And History and write the review.

This is the first book by a sociologist devoted exclusively to a general sociology of mathematics. The author provides examples of different ways of thinking about mathematics sociologically. The survey of mathematical traditions covers ancient China, the Arabic-Islamic world, India, and Europe. Following the leads of classical social theorists such as Emile Durkheim, Restivo develops the idea that mathematical concepts and ideas are collective representations, and that it is mathematical communities that create mathematics, not individual mathematicians. The implications of the sociology of mathematics, and especially of pure mathematics, for a sociology of mind are also explored. In general, the author's objective is to explore, conjecture, suggest, and stimulate in order to introduce the sociological perspective on mathematics, and to broaden and deepen the still narrow, shallow path that today carries the sociology of mathematics. This book will interest specialists in the philosophy, history, and sociology of mathematics, persons interested in mathematics education, students of science and society, and people interested in current developments in the social and cultural analysis of science and mathematics.
What would Newton see if he looked out his bedroom window? This book describes the world around the important mathematicians of the past, and explores the complex interaction between mathematics, mathematicians, and society. It takes the reader on a grand tour of history from the ancient Egyptians to the twentieth century to show how mathematicians and mathematics were affected by the outside world, and at the same time how the outside world was affected by mathematics and mathematicians. Part biography, part mathematics, and part history, this book provides the interested layperson the background to understand mathematics and the history of mathematics, and is suitable for supplemental reading in any history of mathematics course.
This textbook provides a unified and concise exploration of undergraduate mathematics by approaching the subject through its history. Readers will discover the rich tapestry of ideas behind familiar topics from the undergraduate curriculum, such as calculus, algebra, topology, and more. Featuring historical episodes ranging from the Ancient Greeks to Fermat and Descartes, this volume offers a glimpse into the broader context in which these ideas developed, revealing unexpected connections that make this ideal for a senior capstone course. The presentation of previous versions has been refined by omitting the less mainstream topics and inserting new connecting material, allowing instructors to cover the book in a one-semester course. This condensed edition prioritizes succinctness and cohesiveness, and there is a greater emphasis on visual clarity, featuring full color images and high quality 3D models. As in previous editions, a wide array of mathematical topics are covered, from geometry to computation; however, biographical sketches have been omitted. Mathematics and Its History: A Concise Edition is an essential resource for courses or reading programs on the history of mathematics. Knowledge of basic calculus, algebra, geometry, topology, and set theory is assumed. From reviews of previous editions: “Mathematics and Its History is a joy to read. The writing is clear, concise and inviting. The style is very different from a traditional text. I found myself picking it up to read at the expense of my usual late evening thriller or detective novel.... The author has done a wonderful job of tying together the dominant themes of undergraduate mathematics.” Richard J. Wilders, MAA, on the Third Edition "The book...is presented in a lively style without unnecessary detail. It is very stimulating and will be appreciated not only by students. Much attention is paid to problems and to the development of mathematics before the end of the nineteenth century.... This book brings to the non-specialist interested in mathematics many interesting results. It can be recommended for seminars and will be enjoyed by the broad mathematical community." European Mathematical Society, on the Second Edition
Analysis as an independent subject was created as part of the scientific revolution in the seventeenth century. Kepler, Galileo, Descartes, Fermat, Huygens, Newton, and Leibniz, to name but a few, contributed to its genesis. Since the end of the seventeenth century, the historical progress of mathematical analysis has displayed unique vitality and momentum. No other mathematical field has so profoundly influenced the development of modern scientific thinking. Describing this multidimensional historical development requires an in-depth discussion which includes a reconstruction of general trends and an examination of the specific problems. This volume is designed as a collective work of authors who are proven experts in the history of mathematics. It clarifies the conceptual change that analysis underwent during its development while elucidating the influence of specific applications and describing the relevance of biographical and philosophical backgrounds. The first ten chapters of the book outline chronological development and the last three chapters survey the history of differential equations, the calculus of variations, and functional analysis. Special features are a separate chapter on the development of the theory of complex functions in the nineteenth century and two chapters on the influence of physics on analysis. One is about the origins of analytical mechanics, and one treats the development of boundary-value problems of mathematical physics (especially potential theory) in the nineteenth century. The book presents an accurate and very readable account of the history of analysis. Each chapter provides a comprehensive bibliography. Mathematical examples have been carefully chosen so that readers with a modest background in mathematics can follow them. It is suitable for mathematical historians and a general mathematical audience.
This monumental book traces the origins and development of mathematics in the ancient Middle East, from its earliest beginnings in the fourth millennium BCE to the end of indigenous intellectual culture in the second century BCE when cuneiform writing was gradually abandoned. Eleanor Robson offers a history like no other, examining ancient mathematics within its broader social, political, economic, and religious contexts, and showing that mathematics was not just an abstract discipline for elites but a key component in ordering society and understanding the world. The region of modern-day Iraq is uniquely rich in evidence for ancient mathematics because its prehistoric inhabitants wrote on clay tablets, many hundreds of thousands of which have been archaeologically excavated, deciphered, and translated. Drawing from these and a wealth of other textual and archaeological evidence, Robson gives an extraordinarily detailed picture of how mathematical ideas and practices were conceived, used, and taught during this period. She challenges the prevailing view that they were merely the simplistic precursors of classical Greek mathematics, and explains how the prevailing view came to be. Robson reveals the true sophistication and beauty of ancient Middle Eastern mathematics as it evolved over three thousand years, from the earliest beginnings of recorded accounting to complex mathematical astronomy. Every chapter provides detailed information on sources, and the book includes an appendix on all mathematical cuneiform tablets published before 2007.
The ubiquity and importance of mathematics in our complex society is generally not in doubt. However, even a scientifically interested layman would be hard pressed to point out aspects of our society where contemporary mathematical research is essential. Most popular examples are finance, engineering, wheather and industry, but the way mathematics comes into play is widely unknown in the public. And who thinks of application fields like biology, encryption, architecture, or voting systems? This volume comprises a number of success stories of mathematics in our society - important areas being shaped by cutting edge mathematical research. The authors are eminent mathematicians with a high sense for public presentation, addressing scientifically interested laymen as well as professionals in mathematics and its application disciplines.
During the last few decades historians of science have shown a growing interest in science as a cultural activity and have regarded science more and more as part of the gene ral developments that have occurred in society. This trend has been less evident arnong historians of mathematics, who traditionally concentrate primarily on tracing the develop ment of mathematical knowledge itself. To some degree this restriction is connected with the special role of mathematics compared with the other sciences; mathematics typifies the most objective, most coercive type of knowledge, and there fore seems to be least affected by social influences. Nevertheless, biography, institutional history and his tory of national developments have long been elements in the historiography of mathematics. This interest in the social aspects of mathematics has widened recently through the stu dy of other themes, such as the relation of mathematics to the development of the educational system. Some scholars have begun to apply the methods of historical sociology of knowledge to mathematics; others have attempted to give a ix x Marxist analysis of the connection between mathematics and productive forces, and there have been philosophical studies about the communication processes involved in the production of mathematical knowledge. An interest in causal analyses of historical processes has led to the study of other factors influencing the development of mathematics, such as the f- mation of mathematical schools, the changes in the profes- onal situation of the mathematician and the general cultural milieu of the mathematical scientist.
In an increasingly electronic society, these exercises are designed to help school and collegiate educators use historical devices of mathematics to balance the digital side of mathematics.
Part of the A Century of Mathematics in America collection, this book contains articles that describe the mathematics and the mathematical personalities in some of the nations' prominent departments: Johns Hopkins, Clark, Columbia, MIT, Michigan, Texas, and the Institute for Advanced Study.
This book presents a fascinating story of the long life and great accomplishments of Jacques Hadamard (1865-1963), who was once called 'the living legend of mathematics'. As one of the last universal mathematicians, Hadamard's contributions to mathematics are landmarks in various fields. His life is linked with world history of the 20th century in a dramatic way. This work provides an inspiring view of the development of various branches of mathematics during the 19th and 20th centuries.Part I of the book portrays Hadamard's family, childhood and student years, scientific triumphs, and his personal life and trials during the first two world wars. The story is told of his involvement in the Dreyfus affair and his subsequent fight for justice and human rights. Also recounted are Hadamard's worldwide travels, his famous seminar, his passion for botany, his home orchestra, where he played the violin with Einstein, and his interest in the psychology of mathematical creativity. Hadamard's life is described in a readable and inviting way.The authors humorously weave throughout the text his jokes and the myths about him. They also movingly recount the tragic side of his life. Stories about his relatives and friends, and old letters and documents create an authentic and colorful picture. The book contains over 300 photographs and illustrations. Part II of the book includes a lucid overview of Hadamard's enormous work, spanning over six decades. The authors do an excellent job of connecting his results to current concerns.While the book is accessible to beginners, it also provides rich information of interest to experts. Vladimir Mazya and Tatyana Shaposhnikova were the 2003 laureates of the Insitut de France's Prix Alfred Verdaguer. One or more prizes are awarded each year, based on suggestions from the Academie francaise, the Academie de sciences, and the Academie de beaux-arts, for the most remarkable work in the arts, literature, and the sciences. In 2003, the award for excellence was granted in recognition of Mazya and Shaposhnikova's book, ""Jacques Hadamard, A Universal Mathematician"", which is both an historical book about a great citizen and a scientific book about a great mathematician.