Download Free Mathematics In Games Sports And Gambling Book in PDF and EPUB Free Download. You can read online Mathematics In Games Sports And Gambling and write the review.

Mathematics in Games, Sports, and Gambling: The Games People Play, Second Edition demonstrates how discrete probability, statistics, and elementary discrete mathematics are used in games, sports, and gambling situations. With emphasis on mathematical thinking and problem solving, the text draws on numerous examples, questions, and problems to expla
The new edition of a favourite which introduces and develops some of the important and beautiful elementary mathematics needed for rational analysis of various gambling and game activities. Most of the standard casino games (roulette, craps, blackjack, keno), some social games (backgammon, poker, bridge) and various other activities (state lotteries, horse racing) are treated in ways that bring out their mathematical aspects. The mathematics developed ranges from the predictable concepts of probability, expectation, and binomial coefficients to some less well-known ideas of elementary game theory. The second edition includes new material on: • Sports betting and the mathematics behind it • Game theory applied to bluffing in poker and related to the 'Texas Holdem phenomenon' • The Nash equilibrium concept and its emergence in popular culture • Internet links to games and Java applets for practice and classroom use. Game-related exercises are included and solutions to some appear at the end of the book.
Many experiments have shown the human brain generally has very serious problems dealing with probability and chance. A greater understanding of probability can help develop the intuition necessary to approach risk with the ability to make more informed (and better) decisions. The first four chapters offer the standard content for an introductory probability course, albeit presented in a much different way and order. The chapters afterward include some discussion of different games, different "ideas" that relate to the law of large numbers, and many more mathematical topics not typically seen in such a book. The use of games is meant to make the book (and course) feel like fun! Since many of the early games discussed are casino games, the study of those games, along with an understanding of the material in later chapters, should remind you that gambling is a bad idea; you should think of placing bets in a casino as paying for entertainment. Winning can, obviously, be a fun reward, but should not ever be expected. Changes for the Second Edition: New chapter on Game Theory New chapter on Sports Mathematics The chapter on Blackjack, which was Chapter 4 in the first edition, appears later in the book. Reorganization has been done to improve the flow of topics and learning. New sections on Arkham Horror, Uno, and Scrabble have been added. Even more exercises were added! The goal for this textbook is to complement the inquiry-based learning movement. In my mind, concepts and ideas will stick with the reader more when they are motivated in an interesting way. Here, we use questions about various games (not just casino games) to motivate the mathematics, and I would say that the writing emphasizes a "just-in-time" mathematics approach. Topics are presented mathematically as questions about the games themselves are posed. Table of Contents Preface 1. Mathematics and Probability 2. Roulette and Craps: Expected Value 3. Counting: Poker Hands 4. More Dice: Counting and Combinations, and Statistics 5. Game Theory: Poker Bluffing and Other Games 6. Probability/Stochastic Matrices: Board Game Movement 7. Sports Mathematics: Probability Meets Athletics 8. Blackjack: Previous Methods Revisited 9. A Mix of Other Games 10. Betting Systems: Can You Beat the System? 11. Potpourri: Assorted Adventures in Probability Appendices Tables Answers and Selected Solutions Bibliography Biography Dr. David G. Taylor is a professor of mathematics and an associate dean for academic affairs at Roanoke College in southwest Virginia. He attended Lebanon Valley College for his B.S. in computer science and mathematics and went to the University of Virginia for his Ph.D. While his graduate school focus was on studying infinite dimensional Lie algebras, he started studying the mathematics of various games in order to have a more undergraduate-friendly research agenda. Work done with two Roanoke College students, Heather Cook and Jonathan Marino, appears in this book! Currently he owns over 100 different board games and enjoys using probability in his decision-making while playing most of those games. In his spare time, he enjoys reading, cooking, coding, playing his board games, and spending time with his six-year-old dog Lilly.
With an emphasis on mathematical thinking and problem solving, Mathematics in Games, Sports, and Gambling — The Games People Play shows how discrete probability, statistics, and elementary discrete mathematics are used in games, sports, and gambling situations. It draws on numerous examples, questions, and problems to explain the application of mathematical theory to various real-life games. Only requiring high school algebra, the text offers flexibility in choosing what material to cover in a basic mathematics course. It covers permutations in the two-deck matching game so derangements can be counted, introduces graphs to find matches when looking at extensions of the five-card trick, and studies lexicographic orderings and ideas of encoding for card tricks. The text also explores linear equations and weighted equations in the section on the NFL passer rating formula and presents graphing to show how data can be compared or displayed. For each topic, the author includes exercises based on real games and sports data.
Lucid, instructive, and full of surprises, this book examines how simple mathematical analysis can throw unexpected light on games of every type, from poker to golf to the Rubik's cube. 1989 edition.
Over the past two decades, gamblers have begun taking mathematics into account more seriously than ever before. While probability theory is the only rigorous theory modeling the uncertainty, even though in idealized conditions, numerical probabilities are viewed not only as mere mathematical information, but also as a decision-making criterion, especially in gambling. This book presents the mathematics underlying the major games of chance and provides a precise account of the odds associated with all gaming events. It begins by explaining in simple terms the meaning of the concept of probability for the layman and goes on to become an enlightening journey through the mathematics of chance, randomness and risk. It then continues with the basics of discrete probability (definitions, properties, theorems and calculus formulas), combinatorics and counting arguments for those interested in the supporting mathematics. These mathematic sections may be skipped by readers who do not have a minimal background in mathematics; these readers can skip directly to the "Guide to Numerical Results" to pick the odds and recommendations they need for the desired gaming situation. Doing so is possible due to the organization of that chapter, in which the results are listed at the end of each section, mostly in the form of tables. The chapter titled "The Mathematics of Games of Chance" presents these games not only as a good application field for probability theory, but also in terms of human actions where probability-based strategies can be tried to achieve favorable results. Through suggestive examples, the reader can see what are the experiments, events and probability fields in games of chance and how probability calculus works there. The main portion of this work is a collection of probability results for each type of game. Each game's section is packed with formulas and tables. Each section also contains a description of the game, a classification of the gaming events and the applicable probability calculations. The primary goal of this work is to allow the reader to quickly find the odds for a specific gaming situation, in order to improve his or her betting/gaming decisions. Every type of gaming event is tabulated in a logical, consistent and comprehensive manner. The complete methodology and complete or partial calculations are shown to teach players how to calculate probability for any situation, for every stage of the game for any game. Here, readers can find the real odds, returned by precise mathematical formulas and not by partial simulations that most software uses. Collections of odds are presented, as well as strategic recommendations based on those odds, where necessary, for each type of gaming situation. The book contains much new and original material that has not been published previously and provides great coverage of probabilities for the following games of chance: Dice, Slots, Roulette, Baccarat, Blackjack, Texas Hold'em Poker, Lottery and Sport Bets. Most of games of chance are predisposed to probability-based decisions. This is why the approach is not an exclusively statistical one (like many other titles published on this subject), but analytical: every gaming event is taken as an individual applied probability problem to solve. A special chapter defines the probability-based strategy and mathematically shows why such strategy is theoretically optimal.
Optimal Sports Math, Statistics, and Fantasy provides the sports community—students, professionals, and casual sports fans—with the essential mathematics and statistics required to objectively analyze sports teams, evaluate player performance, and predict game outcomes. These techniques can also be applied to fantasy sports competitions. Readers will learn how to: - Accurately rank sports teams - Compute winning probability - Calculate expected victory margin - Determine the set of factors that are most predictive of team and player performance Optimal Sports Math, Statistics, and Fantasy also illustrates modeling techniques that can be used to decode and demystify the mysterious computer ranking schemes that are often employed by post-season tournament selection committees in college and professional sports. These methods offer readers a verifiable and unbiased approach to evaluate and rank teams, and the proper statistical procedures to test and evaluate the accuracy of different models. Optimal Sports Math, Statistics, and Fantasy delivers a proven best-in-class quantitative modeling framework with numerous applications throughout the sports world. - Statistical approaches to predict winning team, probabilities, and victory margin - Procedures to evaluate the accuracy of different models - Detailed analysis of how mathematics and statistics are used in a variety of different sports - Advanced mathematical applications that can be applied to fantasy sports, player evaluation, salary negotiation, team selection, and Hall of Fame determination
Understand the Math Underlying Some of Your Favorite Gambling Games Basic Gambling Mathematics: The Numbers Behind the Neon explains the mathematics involved in analyzing games of chance, including casino games, horse racing, and lotteries. The book helps readers understand the mathematical reasons why some gambling games are better for the player than others. It is also suitable as a textbook for an introductory course on probability. Along with discussing the mathematics of well-known casino games, the author examines game variations that have been proposed or used in actual casinos. Numerous examples illustrate the mathematical ideas in a range of casino games while end-of-chapter exercises go beyond routine calculations to give readers hands-on experience with casino-related computations. The book begins with a brief historical introduction and mathematical preliminaries before developing the essential results and applications of elementary probability, including the important idea of mathematical expectation. The author then addresses probability questions arising from a variety of games, including roulette, craps, baccarat, blackjack, Caribbean stud poker, Royal Roulette, and sic bo. The final chapter explores the mathematics behind "get rich quick" schemes, such as the martingale and the Iron Cross, and shows how simple mathematics uncovers the flaws in these systems.
A story of using computer simulations and mathematical modeling techniques to predict the outcome of jai-alai matches and bet on them successfully.
"An elegant and amusing account" of how gambling has been reshaped by the application of science and revealed the truth behind a lucky bet (Wall Street Journal). For the past 500 years, gamblers-led by mathematicians and scientists-have been trying to figure out how to pull the rug out from under Lady Luck. In The Perfect Bet, mathematician and award-winning writer Adam Kucharski tells the astonishing story of how the experts have succeeded, revolutionizing mathematics and science in the process. The house can seem unbeatable. Kucharski shows us just why it isn't. Even better, he demonstrates how the search for the perfect bet has been crucial for the scientific pursuit of a better world.