Download Free Mathematics For Economists And Social Scientists Book in PDF and EPUB Free Download. You can read online Mathematics For Economists And Social Scientists and write the review.

In How Economics Became a Mathematical Science E. Roy Weintraub traces the history of economics through the prism of the history of mathematics in the twentieth century. As mathematics has evolved, so has the image of mathematics, explains Weintraub, such as ideas about the standards for accepting proof, the meaning of rigor, and the nature of the mathematical enterprise itself. He also shows how economics itself has been shaped by economists’ changing images of mathematics. Whereas others have viewed economics as autonomous, Weintraub presents a different picture, one in which changes in mathematics—both within the body of knowledge that constitutes mathematics and in how it is thought of as a discipline and as a type of knowledge—have been intertwined with the evolution of economic thought. Weintraub begins his account with Cambridge University, the intellectual birthplace of modern economics, and examines specifically Alfred Marshall and the Mathematical Tripos examinations—tests in mathematics that were required of all who wished to study economics at Cambridge. He proceeds to interrogate the idea of a rigorous mathematical economics through the connections between particular mathematical economists and mathematicians in each of the decades of the first half of the twentieth century, and thus describes how the mathematical issues of formalism and axiomatization have shaped economics. Finally, How Economics Became a Mathematical Science reconstructs the career of the economist Sidney Weintraub, whose relationship to mathematics is viewed through his relationships with his mathematician brother, Hal, and his mathematician-economist son, the book’s author.
This text offers a presentation of the mathematics required to tackle problems in economic analysis. After a review of the fundamentals of sets, numbers, and functions, it covers limits and continuity, the calculus of functions of one variable, linear algebra, multivariate calculus, and dynamics.
"Economics will never be able to move beyond these vague predictions because it treats human behavior - individual and social - as the product of expectations and preferences - beliefs and desires - the variables that cannot be measured independently of the actual choices we want to predict. These factors, combined with the economist's commitment to the search for equilibrium solutions to theoretical problems, condemn economic theory to permanent predictive weakness. In the end, Rosenberg's analysis is not merely a critique. His aim is to redefine the scope and value of neoclassical theory, suggesting that its character and most important accomplishments need to be correctly understood to defend economics against the charge that it is a science of diminishing returns."--BOOK JACKET.
"More than ever before, modern social scientists require a basic level of mathematical literacy, yet many students receive only limited mathematical training prior to beginning their research careers. This textbook addresses this dilemma by offering a comprehensive, unified introduction to the essential mathematics of social science. Throughout the book the presentation builds from first principles and eschews unnecessary complexity. Most importantly, the discussion is thoroughly and consistently anchored in real social science applications, with more than 80 research-based illustrations woven into the text and featured in end-of-chapter exercises. Students and researchers alike will find this first-of-its-kind volume to be an invaluable resource."--BOOK JACKET.
This is the expanded notes of a course intended to introduce students specializing in mathematics to some of the central ideas of traditional economics. The book should be readily accessible to anyone with some training in university mathematics; more advanced mathematical tools are explained in the appendices. Thus this text could be used for undergraduate mathematics courses or as supplementary reading for students of mathematical economics.
Although the application of differential equations to economics is a vast and vibrant area, the subject has not been systematically studied; it is often treated as a subsidiary part of mathematical economics textbooks. This book aims to fill that void by providing a unique blend of the theory of differential equations and their exciting applications to dynamic economics. Containing not just a comprehensive introduction to the applications of the theory of linear (and linearized) differential equations to economic analysis, the book also studies nonlinear dynamical systems, which have only been widely applied to economic analysis in recent years. It provides comprehensive coverage of the most important concepts and theorems in the theory of differential equations in a way that can be understood by any reader who has a basic knowledge of calculus and linear algebra. In addition to traditional applications of the theory to economic dynamics, the book includes many recent developments in different fields of economics.
This textbook introduces students of economics to the fundamental notions and instruments in linear algebra. Linearity is used as a first approximation to many problems that are studied in different branches of science, including economics and other social sciences. Linear algebra is also the most suitable to teach students what proofs are and how to prove a statement. The proofs that are given in the text are relatively easy to understand and also endow the student with different ways of thinking in making proofs. Theorems for which no proofs are given in the book are illustrated via figures and examples. All notions are illustrated appealing to geometric intuition. The book provides a variety of economic examples using linear algebraic tools. It mainly addresses students in economics who need to build up skills in understanding mathematical reasoning. Students in mathematics and informatics may also be interested in learning about the use of mathematics in economics.
The book studies a set of mathematical tools and techniques most necessary for undergraduate economics majors as they transition from largely non-technical first-year principles courses into calculus-based upper-level courses in economics. The book’s presentation style places more emphasis on the intuition underlying the mathematical concepts and results discussed and less on proofs and technical details. Its discussion topics have been chosen in terms of their immediate usefulness for beginners, while examples and applications are drawn from material that is familiar from introductory economics courses.