Download Free Mathematics Classrooms In Twelve Countries Book in PDF and EPUB Free Download. You can read online Mathematics Classrooms In Twelve Countries and write the review.

The Learner's Perspective Study aims to juxtapose the observable practices of the classroom and the meanings attributed to those practices by classroom participants. The LPS research design documents sequences of at least ten lessons, using three video cameras, supplemented by the reconstructive accounts of classroom participants obtained in post-lesson video-stimulated interviews, and by test and questionnaire data, and copies of student written material. In each participating country, data generation focuses on the classrooms of three teachers, identified by the local mathematics education community as competent, and situated in demographically different school communities within the one major city. The large body of complex data supports both the characterisation of practice in the classrooms of competent teachers and the development of theory.
A thinking student is an engaged student Teachers often find it difficult to implement lessons that help students go beyond rote memorization and repetitive calculations. In fact, institutional norms and habits that permeate all classrooms can actually be enabling "non-thinking" student behavior. Sparked by observing teachers struggle to implement rich mathematics tasks to engage students in deep thinking, Peter Liljedahl has translated his 15 years of research into this practical guide on how to move toward a thinking classroom. Building Thinking Classrooms in Mathematics, Grades K–12 helps teachers implement 14 optimal practices for thinking that create an ideal setting for deep mathematics learning to occur. This guide Provides the what, why, and how of each practice and answers teachers’ most frequently asked questions Includes firsthand accounts of how these practices foster thinking through teacher and student interviews and student work samples Offers a plethora of macro moves, micro moves, and rich tasks to get started Organizes the 14 practices into four toolkits that can be implemented in order and built on throughout the year When combined, these unique research-based practices create the optimal conditions for learner-centered, student-owned deep mathematical thinking and learning, and have the power to transform mathematics classrooms like never before.
The book has been written by an international group of very activeresearchers and scholars who have a passion for the study of Chinesemathematics education. It aims to provide readers with a comprehensiveand updated picture of the teaching and learning of mathematicsinvolving Chinese students from various perspectives, including theways in which Chinese students learn mathematics in classrooms, schools and homes, the influence of the cultural and socialenvironment on Chinese students'' mathematics learning, and thestrengths and weaknesses of the ways in which Chinese learnmathematics
Utilizing the LPS dataset, Algebra Teaching around the World documents eighth grade algebra teaching across a variety of countries that differ geographically and culturally. Different issues in algebra teaching are reported, and different theories are used to characterize algebra lessons or to compare algebra teaching in different countries. Many commonalities in algebra teaching around the world are identified, but there are also striking and deep-rooted differences. The different ways algebra was taught in different countries point to how algebra teaching may be embedded in the culture and the general traditions of mathematics education of the countries concerned. In particular, a comparison is made between algebra lessons in the Confucian-Heritage Culture (CHC) countries and ‘Western’ countries. It seems that a common emphasis of algebra teaching in CHC countries is the ‘linkage’ or ‘coherence’ of mathematics concepts, both within an algebraic topic and between topics. On the other hand, contemporary algebra teaching in many Western school systems places increasing emphasis on the use of algebra in mathematical modeling in ‘real world’ contexts and in the instructional use of metaphors, where meaning construction is assisted by invoking contexts outside the domain of algebraic manipulation, with the intention to helping students to form connections between algebra and other aspects of their experience. Algebra Teaching around the World should be of value to researchers with a focus on algebra, pedagogy or international comparisons of education. Because of the pedagogical variations noted here, there is a great deal of material that will be of interest to both teachers and teacher educators.
Mathematics curriculum, which is often a focus in education reforms, has not received extensive research attention until recently. Ongoing mathematics curriculum changes in many education systems call for further research and sharing of effective curriculum policies and practices that can help lead to the improvement of school education. This book provides a unique international perspective on diverse curriculum issues and practices in different education systems, offering a comprehensive picture of various stages along curriculum transformation from the intended to the achieved, and showing how curriculum changes in various stages contribute to mathematics teaching and learning in different educational systems and cultural contexts. The book is organized to help readers learn not only from reading individual chapters, but also from reading across chapters and sections to explore broader themes, including: Identifying what is important in mathematics for teaching and learning in different education systems; Understanding mathematics curriculum and its changes that are valued over time in different education systems; Identifying and analyzing effective curriculum practices; Probing effective infrastructure for curriculum development and implementation. Mathematics Curriculum in School Education brings new insights into curriculum policies and practices to the international community of mathematics education, with 29 chapters and four section prefaces contributed by 56 scholars from 14 different education systems. This rich collection is indispensable reading for mathematics educators, researchers, curriculum developers, and graduate students interested in learning about recent curriculum development, research, and practices in different education systems. It will help readers to reflect on curriculum policies and practices in their own education systems, and also inspire them to identify and further explore new areas of curriculum research for improving mathematics teaching and learning.
The Learner's Perspective Study ascribes to the premise that the investigation of social practice within the mathematics classrooms must attend to the learners’ practice with at least the same priority as that accorded to the teachers’ practice. In focusing on student voice within this partnership, as enacted in many different guises across different cultures and socio-political learning environments, we hope that we will be better informed to understand the relationship between pedagogy and learning mathematics, and between pedagogy and the empowerment of diverse learners. Research findings from the Learner's Perspective Study reported in this book and its companion volumes affirm just how culturally-situated are the practices of classrooms around the world and the extent to which students are collaborators with the teacher, complicit in the development and enactment of patterns of participation that reflect individual, societal and cultural priorities and associated value systems. In this book, we attend closely to this collaboration with our focus on the voice of the student. Collectively, the authors consider how the deliberate inclusion of student voice can be used to enhance our understandings of mathematics classrooms, of mathematics learning, and of mathematics outcomes for students in classrooms around the world. The Learner’s Perspective Study aims to juxtapose the observable practices of the classroom and the meanings attributed to those practices by classroom participants. The LPS research design documents sequences of at least ten lessons, using three video cameras, supplemented by the reconstructive accounts of classroom participants obtained in post-lesson video-stimulated interviews, and by test and questionnaire data, and copies of student written material. In each participating country, data generation focuses on the classrooms of three teachers, identified by the local mathematics education community as competent, and situated in demographically different school communities within the one major city. The large body of complex data supports both the characterization of practice in the classrooms of competent teachers and the development of theory.
This volume documents a range of qualitative research approaches emerged within mathematics education over the last three decades, whilst at the same time revealing their underlying methodologies. Continuing the discussion as begun in the two 2003 ZDM issues dedicated to qualitative empirical methods, this book presents astate of the art overview on qualitative research in mathematics education and beyond. The structure of the book allows the reader to use it as an actual guide for the selection of an appropriate methodology, on a basis of both theoretical depth and practical implications. The methods and examples illustrate how different methodologies come to life when applied to a specific question in a specific context. Many of the methodologies described are also applicable outside mathematics education, but the examples provided are chosen so as to situate the approach in a mathematical context.
How Chinese Teach Mathematics and Improve Teaching builds upon existing studies to examine mathematics classroom instruction in China. It combines contributions from Chinese scholars with commentary from key Western scholars to offer a truly systematic examination of some important and distinctive features of mathematics classroom instruction. Viewing classroom instruction as part of teachers' instructional practices, this book goes beyond teachers' in-classroom instructional practice by also examining Chinese teachers' approaches and practices in developing and improving teaching. Through this unique approach, How Chinese Teach Mathematics and Improve Teaching expands and unpacks the otherwise fragmented knowledge about Chinese practices in developing and carrying out mathematics classroom instruction.
This book presents an international perspective on environmental educational and specifically the influence that context has on this aspect of curriculum. The focus is on environmental education both formal and non formal and the factors that impact upon its effectiveness, particularly in non-Western and non-English-speaking contexts (i.e., outside the UK, USA, Australia, NZ, etc. ).
Mathematics and Science education have both grown in fertile directions in different geographic regions. Yet, the mainstream discourse in international handbooks does not lend voice to developments in cognition, curriculum, teacher development, assessment, policy and implementation of mathematics and science in many countries. Paradoxically, in spite of advances in information technology and the “flat earth” syndrome, old distinctions and biases between different groups of researcher’s persist. In addition limited accessibility to conferences and journals also contribute to this problem. The International Sourcebooks in Mathematics and Science Education focus on under-represented regions of the world and provides a platform for researchers to showcase their research and development in areas within mathematics and science education. The First Sourcebook on Asian Research in Mathematics Education: China, Korea, Singapore, Japan, Malaysia and India provides the first synthesized treatment of mathematics education that has both developed and is now prominently emerging in the Asian and South Asian world. The book is organized in sections coordinated by leaders in mathematics education in these countries and editorial teams for each country affiliated with them. The purpose of unique sourcebook is to both consolidate and survey the established body of research in these countries with findings that have influenced ongoing research agendas and informed practices in Europe, North America (and other countries) in addition to serving as a platform to showcase existing research that has shaped teacher education, curricula and policy in these Asian countries. The book will serve as a standard reference for mathematics education researchers, policy makers, practitioners and students both in and outside Asia, and complement the Nordic and NCTM perspectives.