Download Free Mathematics As A Tool Book in PDF and EPUB Free Download. You can read online Mathematics As A Tool and write the review.

This book puts forward a new role for mathematics in the natural sciences. In the traditional understanding, a strong viewpoint is advocated, on the one hand, according to which mathematics is used for truthfully expressing laws of nature and thus for rendering the rational structure of the world. In a weaker understanding, many deny that these fundamental laws are of an essentially mathematical character, and suggest that mathematics is merely a convenient tool for systematizing observational knowledge. The position developed in this volume combines features of both the strong and the weak viewpoint. In accordance with the former, mathematics is assigned an active and even shaping role in the sciences, but at the same time, employing mathematics as a tool is taken to be independent from the possible mathematical structure of the objects under consideration. Hence the tool perspective is contextual rather than ontological. Furthermore, tool-use has to respect conditions like suitability, efficacy, optimality, and others. There is a spectrum of means that will normally differ in how well they serve particular purposes. The tool perspective underlines the inevitably provisional validity of mathematics: any tool can be adjusted, improved, or lose its adequacy upon changing practical conditions.
This book is an exploration of tools and mathematics and issues in mathematics education related to tool use. The book has five parts. The first part reflects on doing a mathematical task with different tools, followed by a mathematician's account of tool use in his work. The second considers prehistory and history: tools in the development from ape to human; tools and mathematics in the ancient world; tools for calculating; and tools in mathematics instruction. The third part opens with a broad review of technology and intellectual trends, circa 1970, and continues with three case studies of approaches in mathematics education and the place of tools in these approaches. The fourth part considers issues related to mathematics instructions: curriculum, assessment and policy; the calculator debate; mathematics in the real world; and teachers' use of technology. The final part looks to the future: task and tool design and new forms of activity via connectivity and computer games.
This book explores the option of building on symbolizing, modeling and tool use as personally meaningful activities of students. It discusses the dimension of setting: varying from the study of informal, spontaneous activity of students, to an explicit focus on instructional design, and goals and effects of instruction; and the dimension of the theoretical framework of the researcher: varying from constructivism, to activity theory, cognitive psychology and instructional-design theory.
Real-life problems are often quite complicated in form and nature and, for centuries, many different mathematical concepts, ideas and tools have been developed to formulate these problems theoretically and then to solve them either exactly or approximately. This book aims to gather a collection of papers dealing with several different problems arising from many disciplines and some modern mathematical approaches to handle them. In this respect, the book offers a wide overview on many of the current trends in Mathematics as valuable formal techniques in capturing and exploiting the complexity involved in real-world situations. Several researchers, colleagues, friends and students of Professor María Luisa Menéndez have contributed to this volume to pay tribute to her and to recognize the diverse contributions she had made to the fields of Mathematics and Statistics and to the profession in general. She had a sweet and strong personality, and instilled great values and work ethics in her students through her dedication to teaching and research. Even though the academic community lost her prematurely, she would continue to provide inspiration to many students and researchers worldwide through her published work.
Semiotics as a Tool for Learning Mathematics is a collection of ten theoretical and empirical chapters, from researchers all over the world, who are interested in semiotic notions and their practical uses in mathematics classrooms. Collectively, they present a semiotic contribution to enhance pedagogical aspects both for the teaching of school mathematics and for the preparation of pre-service teachers. This enhancement involves the use of diagrams to visualize implicit or explicit mathematical relations and the use of mathematical discourse to facilitate the emergence of inferential reasoning in the process of argumentation. It will also facilitate the construction of proofs and solutions of mathematical problems as well as the progressive construction of mathematical conceptions that, eventually, will approximate the concept(s) encoded in mathematical symbols. These symbols hinge not only of mental operations but also on indexical and iconic aspects; aspects which often are not taken into account when working on the meaning of mathematical symbols. For such an enhancement to happen, it is necessary to transform basic notions of semiotic theories to make them usable for mathematics education. In addition, it is also necessary to back theoretical claims with empirical data. This anthology attempts to deal with such a conjunction. Overall, this book can be used as a theoretical basis for further semiotic considerations as well as for the design of different ways of teaching mathematical concepts.
The main intention of this book is to describe and develop the conceptual, structural and abstract thinking of mathematics. Specific mathematical structures are used to illustrate the conceptual approach; providing a deeper insight into mutual relationships and abstract common features. These ideas are carefully motivated, explained and illustrated by examples so that many of the more technical proofs can be omitted. The book can therefore be used: · simply as an overview of the panorama of mathematical structures and the relations between them, to be supplemented by more detailed texts whenever you want to acquire a working knowledge of some structure · by itself as a first introduction to abstract mathematics · together with existing textbooks, to put their results into a more general perspective · to gain a new and hopefully deeper perspective after having studied such textbooks Mathematical Concepts has a broader scope and is less detailed than standard mathematical textbooks so that the reader can readily grasp the essential concepts and ideas for individual needs. It will be suitable for advanced mathematicians, postgraduate students and for scientists from other fields with some background in formal reasoning.
This approach to teaching basic math facts, grounded in years of research, will transform students' learning of basic facts and help them become more confident, adept, and successful at math. Mastering the basic facts for addition, subtraction, multiplication, and division is an essential goal for all students. Most educators also agree that success at higher levels of math hinges on this fundamental skill. But what's the best way to get there? Are flash cards, drills, and timed tests the answer? If so, then why do students go into the upper elementary grades (and beyond) still counting on their fingers or experiencing math anxiety? What does research say about teaching basic math facts so they will stick? In Math Fact Fluency, experts Jennifer Bay-Williams and Gina Kling provide the answers to these questions—and so much more. This book offers everything a teacher needs to teach, assess, and communicate with parents about basic math fact instruction, including The five fundamentals of fact fluency, which provide a research-based framework for effective instruction in the basic facts. Strategies students can use to find facts that are not yet committed to memory. More than 40 easy-to-make, easy-to-use games that provide engaging fact practice. More than 20 assessment tools that provide useful data on fact fluency and mastery. Suggestions and strategies for collaborating with families to help their children master the basic math facts. Math Fact Fluency is an indispensable guide for any educator who needs to teach basic math facts.
A Student's Guide to the Study, Practice, and Tools of Modern Mathematics provides an accessible introduction to the world of mathematics. It offers tips on how to study and write mathematics as well as how to use various mathematical tools, from LaTeX and Beamer to Mathematica and Maple to MATLAB and R. Along with a color insert, the text include
This volume was born from the experience of the authors as researchers and educators,whichsuggeststhatmanystudentsofdataminingarehandicapped in their research by the lack of a formal, systematic education in its mat- matics. The data mining literature contains many excellent titles that address the needs of users with a variety of interests ranging from decision making to p- tern investigation in biological data. However, these books do not deal with the mathematical tools that are currently needed by data mining researchers and doctoral students. We felt it timely to produce a book that integrates the mathematics of data mining with its applications. We emphasize that this book is about mathematical tools for data mining and not about data mining itself; despite this, a substantial amount of applications of mathematical c- cepts in data mining are presented. The book is intended as a reference for the working data miner. In our opinion, three areas of mathematics are vital for data mining: set theory,includingpartially orderedsetsandcombinatorics;linear algebra,with its many applications in principal component analysis and neural networks; and probability theory, which plays a foundational role in statistics, machine learning and data mining. Thisvolumeisdedicatedtothestudyofset-theoreticalfoundationsofdata mining. Two further volumes are contemplated that will cover linear algebra and probability theory. The ?rst part of this book, dedicated to set theory, begins with a study of functionsandrelations.Applicationsofthesefundamentalconceptstosuch- sues as equivalences and partitions are discussed. Also, we prepare the ground for the following volumes by discussing indicator functions, ?elds and?-?elds, and other concepts.
"This book is a game changer! Strengths-Based Teaching and Learning in Mathematics: 5 Teaching Turnarounds for Grades K- 6 goes beyond simply providing information by sharing a pathway for changing practice. . . Focusing on our students’ strengths should be routine and can be lost in the day-to-day teaching demands. A teacher using these approaches can change the trajectory of students’ lives forever. All teachers need this resource! Connie S. Schrock Emporia State University National Council of Supervisors of Mathematics President, 2017-2019 NEW COVID RESOURCES ADDED: A Parent’s Toolkit to Strengths-Based Learning in Math is now available on the book’s companion website to support families engaged in math learning at home. This toolkit provides a variety of home-based activities and games for families to engage in together. Your game plan for unlocking mathematics by focusing on students’ strengths. We often evaluate student thinking and their work from a deficit point of view, particularly in mathematics, where many teachers have been taught that their role is to diagnose and eradicate students’ misconceptions. But what if instead of focusing on what students don’t know or haven’t mastered, we identify their mathematical strengths and build next instructional steps on students’ points of power? Beth McCord Kobett and Karen S. Karp answer this question and others by highlighting five key teaching turnarounds for improving students’ mathematics learning: identify teaching strengths, discover and leverage students’ strengths, design instruction from a strengths-based perspective, help students identify their points of power, and promote strengths in the school community and at home. Each chapter provides opportunities to stop and consider current practice, reflect, and transfer practice while also sharing · Downloadable resources, activities, and tools · Examples of student work within Grades K–6 · Real teachers’ notes and reflections for discussion It’s time to turn around our approach to mathematics instruction, end deficit thinking, and nurture each student’s mathematical strengths by emphasizing what makes them each unique and powerful.