Download Free Mathematics And The Real World Book in PDF and EPUB Free Download. You can read online Mathematics And The Real World and write the review.

In this accessible and illuminating study of how the science of mathematics developed, a veteran math researcher and educator looks at the ways in which our evolutionary makeup is both a help and a hindrance to the study of math. Artstein chronicles the discovery of important mathematical connections between mathematics and the real world from ancient times to the present. The author then describes some of the contemporary applications of mathematics—in probability theory, in the study of human behavior, and in combination with computers, which give mathematics unprecedented power. The author concludes with an insightful discussion of why mathematics, for most people, is so frustrating. He argues that the rigorous logical structure of math goes against the grain of our predisposed ways of thinking as shaped by evolution, presumably because the talent needed to cope with logical mathematics gave the human race as a whole no evolutionary advantage. With this in mind, he offers ways to overcome these innate impediments in the teaching of math.
Mathematics in the Real World is a self-contained, accessible introduction to the world of mathematics for non-technical majors. With a focus on everyday applications and context, the topics in this textbook build in difficulty and are presented sequentially, starting with a brief review of sets and numbers followed by an introduction to elementary statistics, models, and graph theory. Data and identification numbers are then covered, providing the pathway to voting and finance. Each subject is covered in a concise and clear fashion through the use of real-world applications and the introduction of relevant terminology. Many sample problems – both writing exercises and multiple-choice questions – are included to help develop students’ level of understanding and to offer a variety of options to instructors. Covering six major units and outlining a one-semester course, Mathematics in the Real World is aimed at undergraduate liberal art students fulfilling the mathematics requirement in their degree program. This introductory text will be an excellent resource for such courses, and will show students where mathematics arises in their everyday lives.
In this vibrant work, which is ideal for both teaching and learning, Apoorva Khare and Anna Lachowska explain the mathematics essential for understanding and appreciating our quantitative world. They show with examples that mathematics is a key tool in the creation and appreciation of art, music, and literature, not just science and technology. The book covers basic mathematical topics from logarithms to statistics, but the authors eschew mundane finance and probability problems. Instead, they explain how modular arithmetic helps keep our online transactions safe, how logarithms justify the twelve-tone scale commonly used in music, and how transmissions by deep space probes are similar to knights serving as messengers for their traveling prince. Ideal for coursework in introductory mathematics and requiring no knowledge of calculus, Khare and Lachowska's enlightening mathematics tour will appeal to a wide audience.
The ultimate aim of this book is to identify the conceptual tools and the instructional modalities which enable students and teachers to cross the boundary between school mathematics and real world problem solving. The book identifies, examines, and integrates seven conceptual tools, of which five are constructs (activity theory, narrative, modeling, critical mathematics education, ethnomathematics) and two are contexts (STEM and the workplace). The author develops two closely linked multiple-perspective frameworks: one for learning real world problem solving in school mathematics, which sets the foundations of learning real world problem solving in school mathematics; and one for teaching real world problem solving in school mathematics, which explores the modalities of teaching real world problem solving in school mathematics. “The book is composed as, on the one hand, a high-level theoretical scholarly work on real world problem solving in school mathematics, and, on the other hand, a set of twelve narratives which, put together, constitute a thought-provoking and moving personal and professional autobiography.” - Mogens Niss “These narratives combine aspects of Murad’s personal trajectory as an individual with those points in his professional career at which he became aware of perspectives on and approaches to mathematics education that were both significant in and of themselves, and instrumental for the specific scholarly endeavor presented in the book.” - Mogens Niss
Algebra is often taught in an abstract manner with little or no emphasis on what algebra is or how it can be used to solve real problems. Just as English can be translated into other languages, word problems can be "translated" into the math language of algebra and easily solved. Real World Algebra explains this process in an easy to understand format using cartoons and drawings. This makes self-learning easy for both the student and any teacher who never did quite understand algebra. Solutions included. Includes chapters on the language of algebra, geometry and algebra, proportions and algebra, physics, levers, the Pythagorean Theorem, percents and algebra, simultaneous equations, and algebra and money.--publisher's website.
#1 INTERNATIONAL BESTSELLER AN ADAM SAVAGE BOOK CLUB PICK The book-length answer to anyone who ever put their hand up in math class and asked, “When am I ever going to use this in the real world?” “Fun, informative, and relentlessly entertaining, Humble Pi is a charming and very readable guide to some of humanity's all-time greatest miscalculations—that also gives you permission to feel a little better about some of your own mistakes.” —Ryan North, author of How to Invent Everything Our whole world is built on math, from the code running a website to the equations enabling the design of skyscrapers and bridges. Most of the time this math works quietly behind the scenes . . . until it doesn’t. All sorts of seemingly innocuous mathematical mistakes can have significant consequences. Math is easy to ignore until a misplaced decimal point upends the stock market, a unit conversion error causes a plane to crash, or someone divides by zero and stalls a battleship in the middle of the ocean. Exploring and explaining a litany of glitches, near misses, and mathematical mishaps involving the internet, big data, elections, street signs, lotteries, the Roman Empire, and an Olympic team, Matt Parker uncovers the bizarre ways math trips us up, and what this reveals about its essential place in our world. Getting it wrong has never been more fun.
This is a book full of ideas for introducing real world problems into mathematics classrooms and assisting teachers and students to benefit from the experience. Taken as a whole these contributions provide a rich resource for mathematics teachers and their students that is readily available in a single volume. Nowadays there is a universal emphasis on teaching for understanding, motivating students to learn mathematics and using real world problems to improve the mathematics experience of school students. However, using real world problems in mathematics classrooms places extra demands on teachers in terms of extra-mathematical knowledge e. g. knowledge of the area of applications, and pedagogical knowledge. Care must also be taken to avoid overly complex situations and applications. Papers in this collection offer a practical perspective on these issues, and more. While many papers offer specific well worked out lesson type ideas, others concentrate on the teacher knowledge needed to introduce real world applications of mathematics into the classroom. We are confident that mathematics teachers who read the book will find a myriad of ways to introduce the material into their classrooms whether in ways suggested by the contributing authors or in their own ways, perhaps through mini-projects or extended projects or practical sessions or enquiry based learning. We are happy if they do!
Learn how quantitative models can help fight client problems head-on Before financial problems can be solved, they need to be fully understood. Since in-depth quantitative modeling techniques are a powerful tool to understanding the drivers associated with financial problems, one would need a solid grasp of these techniques before being able to unlock their full potential of the methods used. In The Mathematics of Financial Models, the author presents real world solutions to the everyday problems facing financial professionals. With interactive tools such as spreadsheets for valuation, pricing, and modeling, this resource combines highly mathematical quantitative analysis with useful, practical methodologies to create an essential guide for investment and risk-management professionals facing modeling issues in insurance, derivatives valuation, and pension benefits, among others. In addition to this, this resource also provides the relevant tools like matrices, calculus, statistics and numerical analysis that are used to build the quantitative methods used. Financial analysts, investment professionals, risk-management professionals, and graduate students will find applicable information throughout the book, and gain from the self-study exercises and the refresher course on key mathematical topics. Equipped with tips and information, The Mathematics of Financial Models Provides practical methodologies based on mathematical quantitative analysis to help analysts, investment and risk-management professionals better navigate client issues Contains interactive tools that demonstrate the power of analysis and modeling Helps financial professionals become more familiar with the challenges across a range of industries Includes a mathematics refresher course and plenty of exercises to get readers up to speed The Mathematics of Financial Models is an in-depth guide that helps readers break through common client financial problems and emerge with clearer strategies for solving issues in the future.
Industrial mathematics is a fast growing field within the mathematical sciences. It is characterized by the origin of the problems which it engages; they all come from industry: research and development, finances, and communications. The common feature running through this enterprise is the goal of gaining a better understanding of industrial models and processes through mathematical ideas and computations. The authors of this book have undertaken the approach of presenting real industrial problems and their mathematical modeling as a motivation for developing mathematical methods that are needed for solving the problems. With each chapter presenting one important problem that arises in today's industry, and then studying the problem by mathematical analysis and computation, this book introduces the reader to many new ideas and methods from ordinary and partial differential equations, and from integral equations and control theory. It brings the excitement of real industrial problems into the undergraduate mathematical curriculum. The problems selected are accessible to students who have already taken what in many colleges and universities constitutes the first two-year basic Calculus sequence. A working knowledge of Fortran, Pascal, or C language is required.