Download Free Mathematical Works Book in PDF and EPUB Free Download. You can read online Mathematical Works and write the review.

"Burdick's exhaustive research has unearthed numerous examples of books not previously cataloged as mathematical. While it was thought that no mathematical writings in English were printed in the Americas before 1703, Burdick gives scholars one of their first chances to discover Jacob Taylor's 1697 Tenebrae, a treatise on solving triangles and other figures using basic trigonometry. He also goes beyond the English language to discuss works in Spanish and Latin, such as Alonso de la Vera Cruz's 1554 logic text, the Recognitio Summularum; a book on astrology by Enrico Martinez; books on the nature of comets by Carlos de Siguenza y Gongora and Eusebio Francisco Kino; and a 1676 almanac by Feliciana Ruiz, the first woman to produce a mathematical work in the Americas.".
Leon Battista Alberti was an outstanding polymath of the fifteenth century, alongside Piero della Francesca and before Leonardo da Vinci. While his contributions to architecture and the visual arts are well known and available in good English editions, and much of his literary and social writings are also available in English, his mathematical works are not well represented in readily available, accessible English editions have remained accessible only to specialists. The four treatises included here – Ludi matematici, De Componendis Cifris, Elementi di pittura and De lunularum quadratura – are extremely valuable in rounding out the portrait of this multitalented thinker. The treatises are presented in modern English translations, with commentary that is intended to make evident the depths of Alberti’s knowledge as well as address the treatises’ mathematical, historical and cultural context, their classical Greek roots, and their relationship to later works by Renaissance thinkers.
Bernard Bolzano (1781-1848, Prague) was an outstanding thinker and reformer, far ahead of his times in many areas, including philosophy, ethics, politics, logic, theology and physics, and mathematics. Aimed at historians of mathematics, philosophy, ethics and logic, this volume contains the first English translations of some of his most significant mathematical writings, which contain the details of many celebrated insights and anticipations: clear topological definitions of various geometric extensions, an effective statement and use of the Cauchy convergence before it appears in Cauchy's work, remarkable results on measurable numbers (a version of real numbers), on functions (the construction of a continuous, non-differentiable function around 1830) and on infinite collections.
For most mathematicians and many mathematical physicists the name Erich Kähler is strongly tied to important geometric notions such as Kähler metrics, Kähler manifolds and Kähler groups. They all go back to a paper of 14 pages written in 1932. This, however, is just a small part of Kähler's many outstanding achievements which cover an unusually wide area: From celestial mechanics he got into complex function theory, differential equations, analytic and complex geometry with differential forms, and then into his main topic, i.e. arithmetic geometry where he constructed a system of notions which is a precursor and, in large parts, equivalent to the now used system of Grothendieck and Dieudonné. His principal interest was in finding the unity in the variety of mathematical themes and establishing thus mathematics as a universal language. In this volume Kähler's mathematical papers are collected following a "Tribute to Herrn Erich Kähler" by S. S. Chern, an overview of Kähler's life data by A. Bohm and R. Berndt, and a Survey of his Mathematical Work by the editors. There are also comments and reports on the developments of the main topics of Kähler's work, starting by W. Neumann's paper on the topology of hypersurface singularities, J.-P. Bourguignon's report on Kähler geometry and, among others by Berndt, Bost, Deitmar, Ekeland, Kunz and Krieg, up to A. Nicolai's essay "Supersymmetry, Kähler geometry and Beyond". As Kähler's interest went beyond the realm of mathematics and mathematical physics, any picture of his work would be incomplete without touching his work reaching into other regions. So a short appendix reproduces three of his articles concerning his vision of mathematics as a universal Theme together with an essay by K. Maurin giving an "Approach to the philosophy of Erich Kähler".
Important study focuses on the revival and assimilation of ancient Greek mathematics in the 13th-16th centuries, via Arabic science, and the 16th-century development of symbolic algebra. 1968 edition. Bibliography.
We hear all the time how American children are falling behind their global peers in various basic subjects, but particularly in math. Is it our fear of math that constrains us? Or our inability to understand math’s place in relation to our everyday lives? How can we help our children better understand the basics of arithmetic if we’re not really sure we understand them ourselves? Here, G. Arnell Williams helps parents and teachers explore the world of math that their elementary school children are learning. Taking readers on a tour of the history of arithmetic, and its growth into the subject we know it to be today, Williams explores the beauty and relevance of mathematics by focusing on the great conceptual depth and genius already inherent in the elementary mathematics familiar to us all, and by connecting it to other well-known areas such as language and the conceptual aspects of everyday life. The result is a book that will help you to better explain mathematics to your children. For those already well versed in these areas, the book offers a tour of the great conceptual and historical facts and assumptions that most simply take for granted. If you are someone who has always struggled with mathematics either because you couldn’t do it or because you never really understood why the rules are the way they are, if you were irritated with the way it was taught to you with the emphasis being only on learning the rules and “recipes” by rote as opposed to obtaining a good conceptual understanding, then How Math Works is for you!
Teacher Guide for use with Principles of Mathematics Book 2. Katherine Loop's Principles of Mathematics Book 2 guides students through the core principles of algebra-equipping your student for High School success! Teacher Guide includes daily schedule, student worksheets, quizzes, tests, and answer key.
"The ancient Greeks argued that the best life was filled with beauty, truth, justice, play and love. The mathematician Francis Su knows just where to find them."--Kevin Hartnett, Quanta Magazine" This is perhaps the most important mathematics book of our time. Francis Su shows mathematics is an experience of the mind and, most important, of the heart."--James Tanton, Global Math Project For mathematician Francis Su, a society without mathematical affection is like a city without concerts, parks, or museums. To miss out on mathematics is to live without experiencing some of humanity's most beautiful ideas. In this profound book, written for a wide audience but especially for those disenchanted by their past experiences, an award-winning mathematician and educator weaves parables, puzzles, and personal reflections to show how mathematics meets basic human desires--such as for play, beauty, freedom, justice, and love--and cultivates virtues essential for human flourishing. These desires and virtues, and the stories told here, reveal how mathematics is intimately tied to being human. Some lessons emerge from those who have struggled, including philosopher Simone Weil, whose own mathematical contributions were overshadowed by her brother's, and Christopher Jackson, who discovered mathematics as an inmate in a federal prison. Christopher's letters to the author appear throughout the book and show how this intellectual pursuit can--and must--be open to all.
“Witty, compelling, and just plain fun to read . . ." —Evelyn Lamb, Scientific American The Freakonomics of math—a math-world superstar unveils the hidden beauty and logic of the world and puts its power in our hands The math we learn in school can seem like a dull set of rules, laid down by the ancients and not to be questioned. In How Not to Be Wrong, Jordan Ellenberg shows us how terribly limiting this view is: Math isn’t confined to abstract incidents that never occur in real life, but rather touches everything we do—the whole world is shot through with it. Math allows us to see the hidden structures underneath the messy and chaotic surface of our world. It’s a science of not being wrong, hammered out by centuries of hard work and argument. Armed with the tools of mathematics, we can see through to the true meaning of information we take for granted: How early should you get to the airport? What does “public opinion” really represent? Why do tall parents have shorter children? Who really won Florida in 2000? And how likely are you, really, to develop cancer? How Not to Be Wrong presents the surprising revelations behind all of these questions and many more, using the mathematician’s method of analyzing life and exposing the hard-won insights of the academic community to the layman—minus the jargon. Ellenberg chases mathematical threads through a vast range of time and space, from the everyday to the cosmic, encountering, among other things, baseball, Reaganomics, daring lottery schemes, Voltaire, the replicability crisis in psychology, Italian Renaissance painting, artificial languages, the development of non-Euclidean geometry, the coming obesity apocalypse, Antonin Scalia’s views on crime and punishment, the psychology of slime molds, what Facebook can and can’t figure out about you, and the existence of God. Ellenberg pulls from history as well as from the latest theoretical developments to provide those not trained in math with the knowledge they need. Math, as Ellenberg says, is “an atomic-powered prosthesis that you attach to your common sense, vastly multiplying its reach and strength.” With the tools of mathematics in hand, you can understand the world in a deeper, more meaningful way. How Not to Be Wrong will show you how.
Katherine Loop has done the remarkable! She has written a solid math course with a truly Biblical worldview. This course goes way beyond the same old Christian math course that teaches math with a few Scriptures sprinkled in and maybe some church-based word problems. This course truly transforms the way we see math. Katherine makes the argument that math is not a neutral subject as most have come to believe. She carefully lays the foundation of how math points to our Creator, the God of the Bible. The nature of God, His Creation, and even the Gospel itself is seen through the study of math. Katherine does a marvelous job of revealing His Glory in this one-of-a-kind math course. Katherine Loop's Principles of Mathematics Biblical Worldview Curriculum is a first of its kind. It takes math to a whole new level students and parents are going to love. It is a guaranteed faith grower!