Download Free Mathematical Vistas Book in PDF and EPUB Free Download. You can read online Mathematical Vistas and write the review.

This book collects nine related mathematical essays which will intrigue and inform. From the reviews: "The authors put their writing where their talents are, and students get to see just how alive mathematics is...there is much to commend the book. It contains plenty of interesting mathematics, often going in unusual directions. I like the diagrams; the authors have chosen mathematics that involves especially pretty ones." --THE MATHEMATICAL ASSOCIATION OF AMERICA
A relaxed and informal presentation conveying the joy of mathematical discovery and insight. Frequent questions lead readers to see mathematics as an accessible world of thought, where understanding can turn opaque formulae into beautiful and meaningful ideas. The text presents eight topics that illustrate the unity of mathematical thought as well as the diversity of mathematical ideas. Drawn from both "pure" and "applied" mathematics, they include: spirals in nature and in mathematics; the modern topic of fractals and the ancient topic of Fibonacci numbers; Pascals Triangle and paper folding; modular arithmetic and the arithmetic of the infinite. The final chapter presents some ideas about how mathematics should be done, and hence, how it should be taught. Presenting many recent discoveries that lead to interesting open questions, the book can serve as the main text in courses dealing with contemporary mathematical topics or as enrichment for other courses. It can also be read with pleasure by anyone interested in the intellectually intriguing aspects of mathematics.
This book starts with simple arithmetic inequalities and builds to sophisticated inequality results such as the Cauchy-Schwarz and Chebyshev inequalities. Nothing beyond high school algebra is required of the student. The exposition is lean. Most of the learning occurs as the student engages in the problems posed in each chapter. And the learning is not “linear”. The central topic of inequalities is linked to others in mathematics. Often these topics relate to much more than algebraic inequalities. There are also “secret” pathways through the book. Each chapter has a subtext, a theme which prepares the student for learning other mathematical topics, concepts, or habits of mind. For example, the early chapters on the arithmetic mean/geometric mean inequality show how very simple observations can be leveraged to yield useful and interesting results. Later chapters give examples of how one can generalize a mathematical statement. The chapter on the Cauchy-Schwarz inequality provides an introduction to vectors as mathematical objects. And there are many other secret pathways that the authors hope the reader will discover—and follow. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.
An informal and readable introduction to higher algebra at the post-calculus level. The concepts of ring and field are introduced through study of the familiar examples of the integers and polynomials, with much emphasis placed on congruence classes leading the way to finite groups and finite fields. New examples and theory are integrated in a well-motivated fashion and made relevant by many applications -- to cryptography, coding, integration, history of mathematics, and especially to elementary and computational number theory. The later chapters include expositions of Rabiin's probabilistic primality test, quadratic reciprocity, and the classification of finite fields. Over 900 exercises, ranging from routine examples to extensions of theory, are scattered throughout the book, with hints and answers for many of them included in an appendix.
The first edition (94301-3) was published in 1995 in TIMS and had 2264 regular US sales, 928 IC, and 679 bulk. This new edition updates the text to Mathematica 5.0 and offers a more extensive treatment of linear algebra. It has been thoroughly revised and corrected throughout.
This text is written for the standard, one-semester, undergraduate course in elementary partial differential equations. The topics include derivations of some of the standard equations of mathematical physics (including the heat equation, the wave equation, and Laplace's equation) and methods for solving those equations on bounded and unbounded domains. Methods include eigenfunction expansions, or separation of variables, and methods based on Fourier and Laplace transforms.
This volume provides accessible and self-contained research problems designed for undergraduate student projects, and simultaneously promotes the development of sustainable undergraduate research programs. The chapters in this work span a variety of topical areas of pure and applied mathematics and mathematics education. Each chapter gives a self-contained introduction on a research topic with an emphasis on the specific tools and knowledge needed to create and maintain fruitful research programs for undergraduates. Some of the topics discussed include:• Disease modeling• Tropical curves and surfaces• Numerical semigroups• Mathematics EducationThis volume will primarily appeal to undergraduate students interested in pursuing research projects and faculty members seeking to mentor them. It may also aid students and faculty participating in independent studies and capstone projects.
Number theory, the branch of mathematics that studies the properties of the integers, is a repository of interesting and quite varied problems, sometimes impossibly difficult ones. In this book, the authors have gathered together a collection of problems from various topics in number theory that they find beautiful, intriguing, and from a certain point of view instructive.
Intended for juniors and seniors majoring in mathematics, as well as anyone pursuing independent study, this book traces the historical development of four different mathematical concepts by presenting readers with the original sources. Each chapter showcases a masterpiece of mathematical achievement, anchored to a sequence of selected primary sources. The authors examine the interplay between the discrete and continuous, with a focus on sums of powers. They then delineate the development of algorithms by Newton, Simpson and Smale. Next they explore our modern understanding of curvature, and finally they look at the properties of prime numbers. The book includes exercises, numerous photographs, and an annotated bibliography.